APP下载

整合素在皮肤创伤修复中的作用

2015-04-16杨少伟孙晓艳付小兵

解放军医学院学报 2015年6期
关键词:基底层整合素角质

杨少伟,孙晓艳,付小兵

1解放军总医院,北京 100853;2解放军总医院第一附属医院 全军创伤修复与组织再生重点实验室暨皮肤损伤修复与组织再生北京市重点实验室,北京 100048

整合素在皮肤创伤修复中的作用

杨少伟1,2,孙晓艳1,2,付小兵1,2

1解放军总医院,北京 100853;2解放军总医院第一附属医院 全军创伤修复与组织再生重点实验室暨皮肤损伤修复与组织再生北京市重点实验室,北京 100048

皮肤是机体抵御外界环境中物理、化学伤害的第一道屏障,其依赖于表皮干细胞的增殖和分化而不断自我更新。整合素是一类细胞黏附受体,其调控细胞-细胞外基质反应,连接细胞外环境与细胞内信号通路,广泛参与增殖、分化和生存等细胞基本活动。本文就整合素分子在调控表皮干细胞的黏附、迁移、信号转导研究进展作一综述,从而为实现皮肤创伤的完美修复提供新的视角。

整合素;基底膜;表皮干细胞;创伤修复

作为人体最大的器官,皮肤是机体免受物理、化学、病原微生物等外界环境伤害的第一道屏障,在维持体温、防止水分丢失等方面起重要作用。其主要通过表皮干细胞(epidermal stem cells,ESCs)的增殖和分化来维持自我更新[1-2]。其中,表皮基底层干细胞主要通过整合素分子实现对基底膜(basement membrane,BM)各种细胞外基质组分的黏附,维持其生物学特性。整合素是细胞黏附分子家族的重要成员之一,广泛表达于细胞表面。是由α和β亚基以非共价键连接形成的异源二聚体跨膜蛋白。已经发现18种α亚基和8种β亚基,它们可以形成24种有功能的异二聚体。按照亚基构成的不同,主要分为含αv亚基整合素、含β1亚基整合素、α6β4整合素3大类[3-4]。在皮肤中,当ESCs周围微环境发生改变时,整合素的功能和表达水平改变,其介导的细胞黏附作用降低,使基底层干细胞增殖分化,并不断外移形成棘细胞层、颗粒层等其他各层的终末分化细胞,完成其定向分化进程[5-6]。因此,整合素通过调节ESCs的活性状态,从而维持皮肤的正常结构和功能,同时参与皮肤创伤后的修复过程。

1 整合素参与细胞的黏附、增殖、分化和迁移

超微结构显示,在BM的基底角质细胞浆膜层和透明板之间,表皮基底层细胞表面存在一层电子致密带,即半桥粒。它由α6β4整合素、网格蛋白、CD151、大疱性类天疱疮(bullous pemphigoid,BP)抗原组成,主要参与基底层细胞的生物活动。在半桥粒中,α6β4整合素、BP抗原和层黏连蛋白-332(laminin,Ln)结合后,进一步与角蛋白-5和角蛋白14相互作用,从而稳定细胞间的黏附活动[7-8]。其中,整合素主要通过α6亚基的胞外域与BP抗原、四旋蛋白相互作用。实验表明,α6β4整合素介导的基底黏附主要是通过与Ln-332结合,进一步促进锚定原纤维与Ln-332稳定结合来实现的[9]。因此,α6β4整合素对于基底层角质细胞对BM的黏附稳定性至关重要[10]。此外,整合素α2β1也是角质细胞黏附于胶原的必要分子[3]。

此外,整合素还调控角质细胞的增殖和分化,不同种类的整合素在功能上存在差异。研究证实,含β1亚基和α6β4整合素在增殖状态的基底层细胞表达上调,而不参与基底上层细胞的分化[9,11];而αvβ8整合素只在上基底层表达,其可能抑制角质细胞增殖而促进分化[4,12]。体外实验中,含β1亚基整合素的β1亚基缺失可以促进角质细胞分化,但是体内实验没有得出相同结果,这可能与细胞间的黏附以及α6β4整合素介导的基底膜黏附活动有关[13-14]。与α6β4整合素缺失引起的皮肤表-真皮连接处病变程度相比,β1亚基缺失引起的病变相对较轻[14-15],这表明α6β4整合素接到的细胞基底膜黏附活动对于皮肤维持正常生理结构和生物功能至关重要。

除了与BM相互结合发挥作用外,整合素对于BM本身的结构完整也非常重要。在含β1亚基整合素中,当β1亚基基因突变时,病理上显示BM组织结构异常,这提示整合素可能参与BM的结构发育;在小鼠发生此突变时可导致早期胚胎的死亡[13-14]。这些研究表明,整合素广泛参与表皮基底角质细胞增殖、分化、凋亡、炎症反应等活动。

2 整合素参与维持ESCs的生物学特性

表皮的自我更新主要依赖于ESCs,其主要位于毛囊隆突部、皮脂腺和滤泡间上皮[16-17]。其中只有毛囊隆突部的干细胞具有多向分化潜能,可分化成为皮肤各部位的终末组织细胞,但是正常情况下其不参与表皮稳态维持,而主要由滤泡间上皮处的干细胞来调节[18]。

ESCs具有强大的分化潜能,其分裂后的子代细胞,一部分不分化而维持干细胞库的稳定,另一部分分化形成具有增殖能力的短暂增殖细胞(transit-amplifying cells,TACs)并不断分化。ESCs分子标记主要有CD34、CK15、CK19、Lgr5、Lgr6等[17,19-20]。相对于TACs亚群,ESCs内α2β1、α3β1和α6β4整合素的表达水平明显上调,因此,在体外可以借助二者的黏附能力来区分这两种细胞亚群,同时整合素分子也可作为ESCs的一种标记分子[21-23]。此外,转录水平上调节进一步证实了整合素对于ESCs“干性”的调控作用。已经证实C-myc基因能够促进细胞不断增殖,而在皮肤中,激活C-myc还可以诱导ESCs的活化,并分化成为皮脂腺和IFE组织来源的细胞[24-25]。其内在机制可能是通过下调β1类和α6β4整合素的表达使表皮细胞对基底层去黏附,同时抑制参与黏附和细胞骨架构成相关蛋白合成来实现的[26]。

含β1整合素通过胞外信号调节激酶(extracellular regulated kinase,ERK)/丝裂原活化蛋白激酶(mitogenactivated protein kinase,MAPK)信号通路调节细胞极性蛋白复合物的分布,进而牵拉纺锤体有序排列,从而完成表皮组织结构的正常有序发育[27]。这种不对称的有丝分裂方式对干细胞命运转归具有重要意义[28-29]。此外,转录因子p51/p63也可能是通过调节整合素的表达,而参与皮肤的正常发育和ESCs特性的维持[30]。由此可见,整合素介导的与ECM的黏附活动通过改变ESCs生存的微环境而影响其生物学功能。

3 整合素相关的信号转导通路

由于其特殊的跨膜结构,整合素参与多种胞内、胞外信号转导的调节[6]。整合素与相应配体结合后,通过磷脂酰肌醇-3-羟激酶(phosphatidylinositol-3OH kinase,PI3K/ AKT)和MAPK通路,调节角质细胞间、细胞和BM的黏附活动[31-32]。这些反应活动主要以黏着斑(focal adhesion,FA)为信号平台,通过黏着斑激酶(focal adhesion kinase,FAK)促进含β1整合素与细胞骨架蛋白的物理连接,调节FA结构进而启动信号通路[33]。另外,整合素还通过参与Ras相似物GTP酶(ras homologue GTPases,Rho GTPases)通路调节细胞骨架蛋白,改变角质细胞的自身状态,影响其黏附和迁移[34-35]。

除了直接参与信号通路外,整合素还可以通过与调节受体络氨酸激酶(receptor tyrosine kinases,RTKs)、ERK、MAPK等通路上某些分子的交互作用,影响多种细胞因子的表达,比如表皮生长因子(epidermal growth factor,EGF)、成纤维生长因子(fibroblast growth factor,FGF)、肝细胞生长因子(hepatocyte growth factor,HGF)、角化细胞生长因子(keratinocyte growth factor,KGF)、转化生长因子α(transforming growth factor-α,TGF-α)和TGF-β等,进而调节角质细胞的增殖、分化、迁移以及细胞外基质和BM结构变化,调节表皮内环境的稳定[36-41]。由此可见,整合素以直接或间接形式参与多种信号通路,构成复杂的调控网络,进而调节皮肤组织结构的发育和生物活动的实现。

4 整合素在创伤修复过程中的作用

皮肤创伤修复过程主要分为3个阶段,炎症应答期、结构重塑期和再上皮化[1,42-43]。为了迅速而有效地完成修复过程,需要多种细胞的参与。创伤时,受损处的血管内的细胞因子诱导巨噬细胞、中性粒细胞等迁移,激活炎症反应。这些炎症细胞释放炎症因子,促使成纤维细胞和血管内皮细胞分泌合成ECM、生成毛细血管、形成肉芽组织[44]。而成纤维细胞向肌成纤维细胞分化,使得伤口收缩,加速愈合进程。接下来,再上皮化形成新的表皮完成组织结构和功能修复。再上皮化过程中,涉及角质细胞的增殖和迁移。轻度创伤基底膜完整时,伤口周围的ESCs表达含β1亚基整合素,与基底膜配体相互作用,从而介导ESCs黏附、增殖、分化、迁移,成为成熟的角质细胞;同时,通过调节基底角质细胞有丝分裂的方向而实现细胞的有序分裂,促进皮肤的组织结构正常修复[16]。重度创伤时,基底膜受损,真皮深层的成纤维细胞表达整合素与ECM相互作用,激活α-平滑肌蛋白(α-smooth muscle actin,α-SMA),引起机械牵拉,促进伤口缩小[45]。此外,TGF-β激活成纤维细胞合成ECM蛋白,与伤口周围ESCs表达的整合素相互作用,共同构建新的基底膜结构,以加快创伤愈合,实现组织结构的重塑[41]。

体外实验表明,角质细胞迁移分为4步:细胞形成伪足并深入创面;整合素介导的细胞黏附稳定这些伪足;细胞体的转入;去黏附和肌凝蛋白作用引起细胞收缩[46]。含β1亚基整合素缺失会引起角质细胞的迁移受损并影响增殖活动,从而延迟修复[15]。此外还有多种整合素分子参与创伤时角质细胞的迁移[47]。而不同整合素在创伤时的作用存在争议,比较明确的是整合素α3β1的α3亚基可以通过干预创伤时的血管生成来影响修复过程[48-50]。此外,创伤应激时,整合素还可以通过调节ECM的变化和BM的构建,改变ESCs的微环境,激活ESCs增殖、分化,调节干细胞的有序分裂,修复受损组织[16,51]。这些研究表明,创伤修复中,整合素介导的细胞-基质黏附活动,改变成纤维细胞和ESCs的微环境,调节细胞的增殖、分化、迁移和凋亡,在实现皮肤正常组织结构和基本生理功能的双重修复中发挥重要作用。

5 展望

在皮肤中,整合素不仅介导表皮角质细胞的黏附、增殖、分化、BM的形成,并参与细胞-基质活动调控ESCs“干性”,参与创伤修复过程。尽管如此,仍然有许多问题亟待解决,如不同整合素及其相关分子作用的差异性还需要深入研究;大多数关于整合素的研究是基于动物实验和单基因水平,而人体皮肤构成和功能具有其特殊性,因此得出结论还需要在复杂的人体生理条件下进行临床验证;许多细胞因子参与皮肤创伤修复,那么整合素参与调控这些细胞因子作用的信号通路中关键分子有哪些?对这些问题的解决,不仅会进一步明确整合素在皮肤稳态、干细胞特性、创伤修复等活动中的作用及相关分子机制,也会促进有关整合素的基础研究向临床应用转化,从而为临床相关疾病的诊治提供新的视角和途径。

1 Evans ND, Oreffo RO, Healy EA, et al. Epithelial mechanobiology,skin wound healing, and the stem cell niche[J]. J Mech Behav Biomed Mater, 2013, 28(SI): 397-409.

2 Elias PM. Structure and function of the stratum corneum extracellular matrix[J]. J Invest Dermatol, 2012, 132(9): 2131-2133.

3 Zhang ZG, Bothe I, Hirche F, et al. Interactions of primary fibroblasts and keratinocytes with extracellular matrix proteins:contribution of alpha(2)beta(1) integrin[J]. J Cell Sci, 2006,119(9): 1886-1895.

4 Araya J, Cambier S, Morris A, et al. Integrin-mediated transforming growth factor-beta activation regulates homeostasis of the pulmonary epithelial-mesenchymal trophic unit[J]. Am J Pathol, 2006, 169(2):405-415.

5 Hegde S, Raghavan S. A skin-depth analysis of integrins: role of the integrin network in health and disease[J]. Cell Commun Adhes,2013, 20(6): 155-169.

6 Eckes B, Krieg T, Wickstroem SA. Role of integrin signalling through integrin-linked kinase in skin physiology and pathology[J]. Exp Dermatol, 2014, 23(7): 453-456.

7 Litjens SH, De Pereda JM, Sonnenberg A. Current insights into the formation and breakdown of hemidesmosomes[J]. Trends Cell Biol,2006, 16(7):376-383.

8 Margadant C, Frijns E, Wilhelmsen KA. Regulation of hemidesmosome disassembly by growth factor receptors[J]. Curr Opin Cell Biol, 2008, 20(5): 589-596.

9 Raymond K, Kreft M, Janssen H, et al. Keratinocytes display normal proliferation, survival and differentiation in conditional beta4-integrin knockout mice[J]. J Cell Sci, 2005, 118(Pt 5):1045-1060.

10 Kobune K, Miura T, Sato T, et al. Influence of plasma and ultraviolet treatment of zirconia on initial attachment of human oral keratinocytes: Expressions of laminin gamma(2) and integrin beta(4)[J]. Dent Mater J, 2014, 33(5): 696-704.

11 Rodius S, Indra G, Thibault C, et al. Loss of alpha6 integrins in keratinocytes leads to an increase in TGFbeta and AP1 signaling and in expression of differentiation genes[J]. J Cell Physiol, 2007, 212(2):439-449.

12 Neurohr C, Nishimura SL, Sheppard D. Activation of transforming growth factor-beta by the integrin alphavbeta8 delays epithelial wound closure[J]. Am J Respir Cell Mol Biol, 2006, 35(2):252-259.

13 Raghavan S, Bauer C, Mundschau G, et al. Conditional ablation of beta1 integrin in skin. Severe defects in epidermal proliferation,basement membrane formation, and hair follicle invagination[J]. J Cell Biol, 2000, 150(5):1149-1160.

14 Brakebusch C, Grose R, Quondamatteo F, et al. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes[J]. EMBO J, 2000, 19(15):3990-4003.

15 Grose R, Hutter C, Bloch W, et al. A crucial role of beta 1 integrins for keratinocyte migration in vitro and during cutaneous wound repair[J]. Development, 2002, 129(9): 2303-2315.

16 Sun X, Fu X, Han W, et al. Epidermal stem cells: an update on their potential in regenerative medicine[J]. Expert Opin Biol Ther,2013, 13(6):901-910.

17 Blanpain C, Fuchs E. Epidermal stem cells of the skin[J]. Annu Rev Cell Dev Biol, 2006, 22:339-373.

18 Ito M, Liu Y, Yang Z, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis[J]. Nat Med, 2005, 11(12):1351-1354.

19 Snippert HJ, Haegebarth A, Kasper M, et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin[J]. Science, 2010, 327(5971):1385-1389.

20 Jaks V, Barker N, Kasper M, et al. Lgr5 marks cycling, yet longlived, hair follicle stem cells[J]. Nat Genet, 2008, 40(11):1291-1299.

21 Akiyama M, Smith LT, Shimizu H. Changing patterns of localization of putative stem cells in developing human hair follicles[J]. J Invest Dermatol, 2000, 114(2):321-327.

22 Kaur P, Li A. Adhesive properties of human basal epidermal cells:an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells[J]. J Invest Dermatol, 2000, 114(3):413-420.

23 Piwko-Czuchra A, Koegel H, Meyer H, et al. Beta1 integrinmediated adhesion signalling is essential for epidermal progenitor cell expansion[J]. PLoS One, 2009, 4(5):e5488.

24 Frye M, Gardner C, Li E, et al. Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment[J]. Development,2003, 130(12): 2793-2808.

25 Waikel RL, Kawachi Y, Waikel PA, et al. Deregulated expression of c-Myc depletes epidermal stem cells[J]. Nat Genet, 2001, 28(2):165-168.

26 Gebhardt A, Frye M, Herold S, Benitah SA, et al. Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1[J]. J Cell Biol, 2006, 172(1):139-149.

27 Lechler T, Fuchs E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin[J]. Nature, 2005, 437(756):275-280.

28 Watt FM, Jensen KB. Epidermal stem cell diversity and quiescence[J]. EMBO Mol Med, 2009, 1(5): 260-267.

29 Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche[J]. Nature, 2001, 414(6859):98-104.

30 Okuyama R, Ogawa E, Nagoshi H, et al. p53 homologue, p51/p63,maintains the immaturity of keratinocyte stem cells by inhibiting notch1 activity[J]. Oncogene, 2007, 26(31): 4478-4488.

31 Zaidel-Bar R, Itzkovitz S, Ma’ayan A, et al. Functional Atlas of the integrin adhesome[J]. Nat Cell Biol, 2007, 9(8): 858-868.

32 Legate KR, Wickström SA, Fässler R. Genetic and cell biological analysis of integrin outside-in signaling[J]. Genes Dev, 2009, 23(4): 397-418.

33 Ilić D, Furuta Y, Kanazawa S, et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice[J]. Nature, 1995, 377(6549):539-544.

34 Del Pozo MA, Alderson NB, Kiosses WB, et al. Integrins regulate Rac targeting by internalization of membrane domains[J]. Science,2004, 303(5659):839-842.

35 Price LS, Langeslag M, Ten Klooster JP, et al. Calcium signaling regulates translocation and activation of Rac[J]. J Biol Chem,2003, 278(41): 39413-39421.

36 Iwata Y, Akamatsu H, Hasegawa S, et al. The epidermal Integrin beta-1 and p75NTR positive cells proliferating and migrating during wound healing produce various growth factors, while the expression of p75NTR is decreased in patients with chronic skin ulcers[J]. J Dermatol Sci, 2013, 71(2):122-129.

37 Dumesic PA, Scholl FA, Barragan DI. Erk1/2 MAP kinases are required for epidermal G2/M progression[J]. J Cell Biol, 2009,185(3): 409-422.

38 Scholl FA, Dumesic PA, Barragan DI, et al. Mek1/2 MAPK kinases are essential for Mammalian development, homeostasis, and Rafinduced hyperplasia[J]. Dev Cell, 2007, 12(4):615-629.

39 Pankow S, Bamberger C, Klippel A, et al. Regulation of epidermal homeostasis and repair by phosphoinositide 3-kinase[J]. J Cell Sci, 2006, 119(19): 4033-4046.

40 Murayama K, Kimura T, Tarutani M, et al. Akt activation induces epidermal hyperplasia and proliferation of epidermal progenitors[J]. Oncogene, 2007, 26(33): 4882-4888.

41 Margadant C, Sonnenberg A. Integrin-TGF-beta crosstalk in fibrosis,cancer and wound healing[J]. EMBO Rep, 2010, 11(2):97-105.

42 付小兵. 创面治疗中的转化医学:部分成果的研发和转化应用与思考[J]. 中华烧伤杂志, 2014, 30(1): 3-5.

43 Kasuya A, Tokura Y. Attempts to accelerate wound healing[J]. J Dermatol Sci, 2014, 76(3):169-172.

44 Werner S, Grose R. Regulation of wound healing by growth factors and cytokines[J]. Physiol Rev, 2003, 83(3): 835-870.

45 Moissoglu K, Schwartz MA. Integrin signalling in directed cell migration[J]. Biol Cell, 2006, 98(9):547-555.

46 Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration:Integrating signals from front to back[J]. Science, 2003, 302(5651):1704-1709.

47 Margadant C, Charafeddine RA, Sonnenberg A. Unique and redundant functions of integrins in the epidermis[J]. FASEB J,2010, 24(11):4133-4152.

48 Margadant C, Raymond K, Kreft M, et al. Integrin alpha3beta1 inhibits directional migration and wound re-epithelialization in the skin[J]. J Cell Sci, 2009, 122(Pt 2):278-288.

49 Mitchell K, Szekeres C, Milano V, et al. Alpha3beta1 integrin in epidermis promotes wound angiogenesis and keratinocyte-toendothelial-cell crosstalk through the induction of MRP3[J]. J Cell Sci, 2009, 122(Pt 11):1778-1787.

50 Sachs N, Secades P, Van Hulst L, et al. Loss of integrin alpha 3 prevents skin tumor formation by promoting epidermal turnover and depletion of slow-cycling cells[J]. Proc Natl Acad Sci U S A,2012, 109(52): 21468-21473.

51 Nakrieko KA, Rudkouskaya A, Irvine TS, et al. Targeted inactivation of integrin-linked kinase in hair follicle stem cells reveals an important modulatory role in skin repair after injury[J]. Mol Biol Cell, 2011, 22(14):2532-2540.

Role of integrin in skin wound healing

YANG Shaowei1,2, SUN Xiaoyan1,2, FU Xiaobing1,2
1Chinese PLA General Hospital, Beijing 100853, China;2Key Laboratory of Wound Healing and Tissue Regeneration, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, China

FU Xiaobing. Email: fuxiaobing@vip.sina.com

Skin provides both a physical and a chemical barrier against the outside world, and keeps self-renewal through the proliferation and differentiation of epithermal stem cells. As one of the adhesion receptors, integrin mediates cell-ECM interactions and provides essential links between extracellular environment and intracellular signal pathways that play roles in many cell activities, such as proliferation, differentiation, and survival. In this article, the research progress of integrin in regulating adhesion, migration and signal transduction of epidermal stem cells, will be reviewed to expand new insights for completing the perfect skin wound healing.

integrin; basilar membrane; epidermal stem cells; wound healing

R 641

A

2095-5227(2015)06-0628-04

10.3969/j.issn.2095-5227.2015.06.029

时间:2015-03-16 11:21

http://www.cnki.net/kcms/detail/11.3275.R.20150316.1121.003.html

2014-12-17

国家“973”重点基础研究发展项目(2012CB518105);国家自然科学基金项目(81372067);北京市科技新星项目(2008B53;2009A38)

Supported by National “973” Program for Basic Research of China(2012C B518105); National Natural Science Foundation of China(81372067)

杨少伟,男,在读博士,医师。研究方向:创伤修复与组织再生。Email: shaowyang@163.com

付小兵,男,中国工程院院士,博士生导师。Email: fuxiaobing@vip.sina.com

猜你喜欢

基底层整合素角质
食管基底层型高级别异型增生9例临床病理分析
P16、P53、Ki-67在食管上皮内瘤变中的表达及诊断意义
整合素αvβ6与牙周炎关系的研究进展
整合素α7与肿瘤关系的研究进展
自体支气管基底层细胞治疗慢性阻塞性肺疾病的小样本探索性研究*
人也会“蜕皮”,周期为一个月
紫外线A辐射对人角质形成细胞的损伤作用
骨角质文物保护研究进展
整合素αvβ6和JunB在口腔鳞癌组织中的表达及其临床意义
角质形成细胞和黑素细胞体外共培养体系的建立