PET小分子凋亡显像示踪剂的研究进展
2015-04-16王腾腾张锦明周乃康
王腾腾,张锦明,张 涛,柳 曦,周乃康
解放军总医院 胸外科,北京 100853
PET小分子凋亡显像示踪剂的研究进展
王腾腾,张锦明,张 涛,柳 曦,周乃康
解放军总医院 胸外科,北京 100853
凋亡是细胞的程序化死亡过程。研究表明,小分子凋亡显像示踪剂可以帮助临床医师早期诊断疾病、检测疾病的进展、治疗后早期评估疗效、协助开发新的治疗方案、指导肿瘤个体化治疗。虽然临床上迫切期望一种理想的小分子凋亡显像PET示踪剂问世,但是一直未能实现,主要是因为临床应用的苛刻要求,包括对凋亡细胞的检测具有较高特异度和灵敏度、合理的生物学分布、药物的安全性、与放射性标记物的兼容性、常规PET设备的显像等。目前小分子凋亡显像PET示踪剂主要分为3类:显示凋亡蛋白活性的示踪剂、检测线粒体跨膜电位破坏的示踪剂和反应膜改变印记的示踪剂。
凋亡显像;小分子探针;正电子发射断层显像术
细胞凋亡不是随机、混乱的细胞死亡,而是程序化、有规律的生物学过程。许多因素可以促发细胞凋亡,包括生理性和病理性的。细胞发生凋亡时首先转变成成簇的膜包裹的颗粒(凋亡小体),然后被巨噬细胞吞噬[1-2]。细胞凋亡主要途径:1)线粒体途径:线粒体膜渗透性改变,不可逆的膜去极化,导致细胞色素C释放,并激活凋亡蛋白酶(Caspases)系统;2)死亡受体途经:许多配体(肿瘤坏死因子、坏死因子相关的凋亡诱导配体、FAS配体)与细胞膜上的死亡受体结合,通过信号传导激活Caspases系统。能够标记到凋亡细胞的示踪剂可以帮助早期诊断疾病、监视疾病进展、评估治疗效果。一个好的临床凋亡显像示踪剂应该集成多种特征:1)对凋亡细胞具有较高的灵敏性和特异性:能够早期检测出凋亡细胞,并能区分凋亡细胞与坏死细胞;2)有效性:静脉注射后能够充分、快速地分布到全身,检测出机体的凋亡细胞,并在非靶向目标器官快速清除,具有良好的信背比;3)安全性:无毒,不引起免疫反应;4)稳定性:在机体内很少被代谢掉[3];5)与常规临床PET具有兼容性。本文对应用于凋亡细胞显像的PET示踪剂的发展及实验研究予以综述。
1 早期凋亡显像示踪剂
2002年,Belhocline等[4]率先将99mTc标记的Annexin-V的衍生物在活体内进行实验。之后,Tait[5]的研究报道,99mTc-annexin-V凋亡显像示踪剂在多种疾病中应用具有很好的可行性和潜在的临床价值,如99mTc-annexin-V被应用到一些心血管疾病,包括心肌梗死、动脉粥样硬化[6],还被用来监测肺部肿瘤的治疗效果[7]。Annexin-V是目前应用最广泛的凋亡细胞直接结合剂,它能结合凋亡细胞膜表面的磷脂酰丝氨酸,其优点是对凋亡细胞具有较高的亲和力,并连接多个荧光基团,直接螯合99mTc。但是,这些研究也提出了这种蛋白质分子显像的局限性:在特异性方面,Annexin-V通过已破坏细胞膜偶联到细胞内的磷脂酰丝氨酸,标记的既有凋亡细胞又有坏死细胞;在生物学分布方面,Annexin-V在非靶向器官清除时间较长,且由于Annexin-V是大分子结构,信背比相对较低[1]。
除此之外,PET成像的Annexin-V的放射性标记物也在尝试。18F半衰期为110 min,因半衰期短而被广泛应用于PET显像。但是,由于Annexin-V拥有大量的功能基团,直接利用18F标记会破坏这些功能基团,因而采用先标记功能基团外的一些基团的方法,如N-琥珀酰4-18F苯甲酸,从而形成Annexin-V的衍生物[8]。虽然这种方法能够获得良好的标记率,但是放射性标记和示踪剂的纯化过程复杂、耗时长、成本高,不适合应用于常规临床检测。为了适应半衰期较长的放射性标记物和解决Annexin-V较慢的清除率,选择一些除18F以外的放射性同位素,如64Cu和124I(半衰期分别是12.7 h,4.2 d)[9]。但是这些同位素半衰期过长,在临床上使用的难度大。
2 检测Caspases的PET示踪剂
Caspases在细胞凋亡线粒体途径和死亡受体途径中都发挥着极其重要的作用[10-11]。最近基于靛红磺胺基团的新型Caspases抑制剂有很大进展,此类化合物是一种非肽类Caspases抑制剂,细胞内Caspases活化后,该试剂的二羰基能共价结合位于Caspases活性中心的半胱氨酸残基,起到拮抗Caspases的作用。这类的化合物多用11C或18F标记,比如18F-ICMT 11,18F-caspase,11C-WC-98,18F-WCIV-3。PET显像实验已经证实,18F-ICMT 11的摄取与细胞凋亡呈正相关,然而腹部器官对该示踪剂的非特异性摄取也较高,肿瘤部位摄取与腹部器官对比度不高,在临床应用时特异性受到影响[12-14]。多个研究表明,在顺铂诱导的体外肿瘤细胞凋亡模型中发现,11C-WC-98、18F-WC-IV-3对凋亡细胞具有高亲和力[15-17]。Zhou等[15]发现,在放线菌酮anti-Fas抗体诱导的肝细胞凋亡模型中,酶学测定显示Caspases类示踪剂在凋亡细胞中呈累积性摄取。该类示踪剂最大的缺点是在活体中对Caspases的亲和力明显下降,只有高浓度的此类示踪剂才能抑制Caspases[18]。这种现象可能与靛红的二碳基非特异性化学反应有关。
3 检测线粒体跨膜电位改变的PET示踪剂
有研究将同位素标记到电压敏感的探针上,如18F苄基三苯基阳离子(18F-FBnTP)用来检测线粒体跨膜电位消失。活体细胞线粒体内膜的电质子梯度使得阳离子流向线粒体基质,这种梯度在凋亡早期就被破坏,示踪剂摄取量也随之下降。因此,这种示踪剂在检测细胞凋亡时显示的信号是减弱的,而其他类的示踪剂是增强的。实验研究表明,在体外星形孢菌素诱导的肺癌细胞凋亡的模型和紫杉醇诱导的乳腺癌细胞模型中,小鼠多西紫杉醇诱导的前列腺肿瘤凋亡模型,18F-FBnTP摄取量显著减少[19-20],这是因为凋亡细胞内的线粒体有限,逐渐被破坏,有效靶点减少,摄取值也会下降。但在某些活体细胞利用多耐药蛋白将这类示踪剂排到细胞外,凋亡显像提示信号下降,可能会将这类细胞误诊为凋亡细胞。Madar等[21-22]的研究表明,18FFBnTP在线粒体密度分布高的器官(心脏和肾)摄取速率快速减慢,信号也随之减少,显像效果较好,而在低代谢器官中的显像效果不佳。
4 反应膜改变印记的PET示踪剂
反应膜改变印记发生在细胞凋亡早期。该印记包括不可逆的质膜电位破坏,部分外质膜和细胞液永久被酸化,细胞膜磷脂酶系统被激活。这些特征性变化能够将正常细胞或坏死细胞区分开来[23]。多种该类示踪剂被研制出来,如DDC、ML-10、ML-9、NST-732、NST-729,在多种凋亡模型中表现出较好的效果。比如抗癌药物诱导的肿瘤细胞凋亡模型、肾衰竭模型、缺血性脑卒中模型、神经变性的疾病模型[24-28]。Zeng等[29]报道了NST-732的衍生物丹磺酰肼被18F标记后在体外实验中能够检测化疗诱导的肿瘤细胞凋亡。18F-ML-10是一种相对分子量为206的化合物。能够选择性地被凋亡细胞摄取,这与线粒体跨膜电位破坏、Caspases激活、DNA水解等凋亡印记有关[23]。18F-ML-10是第1个被应用于临床阶段的示踪剂,在小规模的临床试验中表现出满意的结果。Ⅰ期临床试验中,18F-ML-10显示出良好的稳定性和生物学分布以及安全的剂量范围。Ⅱ期临床试验中,应用18F-ML-10监测缺血性脑卒中患者的血管神经细胞凋亡,在CT检查中得到了验证;恶性肿瘤脑转移行全脑放射治疗后[30],应用18F-ML-10可提供治疗后效果,这种效果在两个月后的MRI检查提示的解剖学上的变化相匹配。该示踪剂的更多临床试验正在进一步开展。
5 结语
凋亡显像在过去的十年经历了快速发展,利用PET成像的示踪剂也随之有了较快的发展。这些革命性的创新从直接偶联磷脂酰丝氨酸、Annexin-V为代表的蛋白质探针,跨越到能够探测凋亡级联反应中某一环节的小分子示踪剂。凋亡事件的复杂性和临床实践的安全性也对新型的小分子示踪剂提出了更严苛的要求。与此同时,在显像设备、PET同位素标记技术、PET信号定量数字分析领域也都有了长足的进步。我们相信通过多学科、多领域的共同合作能够成功地研制出一系列无创、安全、有效的在临床广泛应用的示踪剂。
1 Becker M, Müller CB, De Bastiani MA, et al. The prognostic impact of tumor-associated macrophages and intra-tumoral apoptosis in nonsmall cell lung cancer[J]. Histol Histopathol, 2014, 29(1): 21-31.
2 Saini A, Harjai K, Chhibber S. Inhibitory effect of polyunsaturated fatty acids on apoptosis induced by Streptococcus pneumoniae in alveolar macrophages[J]. Indian J Med Res, 2013, 137(6):1193-1198.
3 Bauwens M, De Saint-Hubert M, Cleynhens J, et al. In vitro and in vivo comparison of 18F and 123I-labeled ML10 with 68Ga-Cys2-AnxA5 for molecular imaging of apoptosis[J]. Q J Nucl Med Mol Imaging, 2013, 57(2):187-200.
4 Belhocine T, Steinmetz N, Hustinx R, et al. Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis[J]. Clin Cancer Res, 2002,8(9): 2766-2774.
5 Tait JF. Imaging of apoptosis[J]. J Nucl Med, 2008, 49(10):1573-1576.
6 Wolters SL, Corsten MF, Reutelingsperger C, et al. Cardiovascular molecular imaging of apoptosis[J]. Eur J Nucl Med Mol Imaging,2007, 34(1): 86-98.
7 Khoda Me, Utsunomiya K, Ha-Kawa S, et al. An investigation of the early detection of radiation induced apoptosis by 99mTc-Annexin Vand 201thallium-chloride in a lung cancer cell line[J]. J Radiat Res, 2012, 53(3): 361-367.
8 Yen TC, Wey SP, Liao CH, et al. Measurement of the binding parameters of annexin derivative-erythrocyte membrane interactions[J]. Anal Biochem, 2010, 406(1): 70-79.
9 Cauchon N, Langlois R, Rousseau JA, et al. PET imaging of apoptosis with (64)Cu-labeled streptavidin following pretargeting of phosphatidylserine with biotinylated annexin-V[J]. Eur J Nucl Med Mol Imaging, 2007, 34(2): 247-258.
10 Xiao Z, Shan J, Li C, et al. Mechanisms of cyclosporine-induced renal cell apoptosis: a systematic review[J]. Am J Nephrol, 2013,37(1): 30-40.
11 Boland K, Flanagan L, Prehn JH. Paracrine control of tissue regeneration and cell proliferation by Caspase-3[J]. Cell Death Dis, 2013, 4:e725.
12 Witney TH, Fortt RR, Aboagye EO. Preclinical assessment of carboplatin treatment efficacy in lung cancer by 18F-ICMT-11-positron emission tomography[J]. PLoS One, 2014, 9(3):e91694.
13 Challapalli A, Kenny LM, Hallett WA, et al. 18F-ICMT-11, a caspase-3-specific PET tracer for apoptosis: biodistribution and radiation dosimetry[J]. J Nucl Med, 2013, 54(9): 1551-1556.
14 Podichetty AK, Wagner S, Schröer S, et al. Fluorinated isatin derivatives. Part 2. New N-substituted 5-pyrrolidinylsulfonyl isatins as potential tools for molecular imaging of caspases in apoptosis[J]. J Med Chem, 2009, 52(11): 3484-3495.
15 Zhou D, Chu W, Chen DL, et al. 18F]- and [11C]-labeled N-benzyl-isatin sulfonamide analogues as PET tracers for apoptosis:synthesis, radiolabeling mechanism, and in vivo imaging study of apoptosis in Fas-treated mice using [11C]WC-98[J]. Org Biomol Chem, 2009, 7(7): 1337-1348.
16 Schelhaas S, Wachsmuth L, Viel T, et al. Variability of proliferation and diffusion in different lung cancer models as measured by 3’-Deoxy-3’-18F-Fluorothymidine PET and Diffusion-Weighted Mr imaging[J]. J Nucl Med, 2014, 55(6): 983-988.
17 Jiang H, Zhao PJ, Su D, et al. Paris saponin I induces apoptosis via increasing the Bax/Bcl-2 ratio and caspase-3 expression in gefitinibresistant non-small cell lung cancer in vitro and in vivo[J]. Mol Med Rep, 2014, 9(6): 2265-2272.
18 Limpachayaporn P, Schäfers M, Schober O, et al. Synthesis of new fluorinated, 2-substituted 5-pyrrolidinylsulfonyl isatin derivatives as caspase-3 and caspase-7 inhibitors: nonradioactive counterparts of putative PET-compatible apoptosis imaging agents[J]. Bioorg Med Chem, 2013, 21(7): 2025-2036.
19 Higuchi T, Fukushima K, Rischpler C, et al. Stable delineation of the ischemic area by the PET perfusion tracer 18F-fluorobenzyl triphenyl phosphonium after transient coronary occlusion[J]. J Nucl Med, 2011, 52(6): 965-969.
20 Madar I, Isoda T, Finley P, et al. 18F-fluorobenzyl triphenyl phosphonium: a noninvasive sensor of brown adipose tissue thermogenesis[J]. J Nucl Med, 2011, 52(5): 808-814.
21 Madar I, Ravert H, Nelkin B, et al. Characterization of membrane potential-dependent uptake of the novel PET tracer 18F-fluorobenzyl triphenylphosphonium cation[J]. Eur J Nucl Med Mol Imaging,2007, 34(12): 2057-2065.
22 Madar I, Huang Y, Ravert H, et al. Detection and quantification of the evolution dynamics of apoptosis using the PET voltage sensor 18F-fluorobenzyl triphenyl phosphonium[J]. J Nucl Med, 2009,50(5): 774-780.
23 Cohen A, Shirvan A, Levin G, et al. From the Gla domain to a novel small-molecule detector of apoptosis[J]. Cell Res, 2009, 19(5):625-637.
24 Oborski MJ, Laymon CM, Qian Y, et al. Challenges and approaches to quantitative therapy response assessment in glioblastoma multiforme using the novel apoptosis positron emission tomography tracer F-18 ML-10[J]. Transl Oncol, 2014, 7(1): 111-119.
25 Allen AM, Ben-Ami M, Reshef A, et al. Assessment of response of brain metastases to radiotherapy by PET imaging of apoptosis with 18F-ML-10[J]. Eur J Nucl Med Mol Imaging, 2012, 39(9):1400-1408.
26 Grimberg H, Levin G, Shirvan A, et al. Monitoring of tumor response to chemotherapy in vivo by a novel small-molecule detector of apoptosis[J]. Apoptosis, 2009, 14(3): 257-267.
27 Shirvan A, Reshef A, Yogev-Falach M, et al. Molecular imaging of neurodegeneration by a novel cross-disease biomarker[J]. Exp Neurol, 2009, 219(1): 274-283.
28 Reshef A, Shirvan A, Waterhouse RN, et al. Molecular imaging of neurovascular cell death in experimental cerebral stroke by PET[J]. J Nucl Med, 2008, 49(9): 1520-1528.
29 Zeng W, Yao ML, Townsend D, et al. Synthesis, biological evaluation and radiochemical labeling of a dansylhydrazone derivative as a potential imaging agent for apoptosis[J]. Bioorg Med Chem Lett, 2008, 18(12): 3573-3577.
30 Oborski MJ, Laymon CM, Lieberman FS, et al. First use of (18)F-labeled ML-10 PET to assess apoptosis change in a newly diagnosed glioblastoma multiforme patient before and early after therapy[J]. Brain Behav, 2014, 4(2): 312-315.
Advances in small molecule radiotracer for PET imaging apoptosis
WANG Tengteng, ZHANG Jinming, ZHANG Tao, LIU Xi, ZHOU Naikang
Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing 100853, China
ZHANG Jinming. Email: zhangjm301@163.com; ZHOU Naikang. Email: znklip@sina.com
Apoptosis is a controlled program of cell death. So far, several studies have shown that small molecule apoptosis imaging tracers can help clinicians in early diagnosis of diseases, detection of disease development, early assessment of the efficacy of treatment and development of new treatment options. However, there is no ideal tracer of small molecule apoptosis imaging at present, the desirable small-molecule apoptosis imaging PET tracer should have the following characteristics: high specificity and sensitivity in detection of apoptotic cells, favorable biodistribution and safe profiles in vivo, compatible with radioactive markers and normal imaging of clinical PET. For different targets during apoptosis, currently, small molecule apoptosis imaging PET tracers are mainly divided into three categories: PET probes for caspase activation, PET probes for detection of collapse of mitochondrial membrane potential and PET probes for detection of apoptotic membrane imprint.
apoptosis imaging; molecular probes; positron-emission tomography
R 445
A
2095-5227(2015)06-0637-03
10.3969/j.issn.2095-5227.2015.06.032
时间:2015-04-09 17:13
http://www.cnki.net/kcms/detail/11.3275.R.20150409.1713.002.html
2015-01-30
国家自然科学基金项目(81371593)
Supported by the National Natural Science Foundation of China(81371593)
王腾腾,男,在读博士。研究方向:PET示踪剂。Email: wtwangteng@126.com
张锦明,男,博士,研究员。Email: zhangjm301@163. com;周乃康,男,主任医师,教授。Email:znklip@sina.com