APP下载

表观遗传异常在肿瘤发生发展中的研究进展*

2015-04-11陈青代智周俭

上海医药 2015年16期
关键词:基转移酶表观甲基化

陈青 代智 周俭

(复旦大学附属中山医院肝癌研究所 上海 200032)

肿瘤的发生、发展与表观遗传异常改变密切相关。5-胞嘧啶碱基(5-position of cytosine,5-mC)甲基化和RNA的N6-甲基腺苷(N6-methyladenosine,m-6-A)是常见并极其重要的表观修饰,具有高度保守性,存在于所有高等真核生物体中[1-3],参与维持基因组的稳定和表达,并在机体生长发育过程中起重要作用[4-5]。DNA甲基化修饰调控正常生长发育过程,包括X染色体失活、印记和转录调节。异常DNA甲基化是肿瘤的重要的表观特征,参与肿瘤的发生、发展[6-8],启动子区域甲基化修饰可导致转录抑制。研究表明发现TET(ten-eleven translocation)酶家族包括TET1、2、3,可催化5-mC成为5-hmC[9-10]。RNA的m-6-A修饰也是常见的表观修饰,类似于DNA的5-mC修饰。研究表明RNA的m-6-A表观修饰可影响RNA的转录、代谢、剪接、稳定性和蛋白与其结合等,参与精子形成、发育等重要的生物学过程[11-12]。研究发现,RNA脱甲基酶肥胖风险基因(fat mass and obesity-associated,FTO)和 ALKBH5可擦去RNA的m-6-A印记。本文综述DNA与RNA甲基化表观修饰的生物学特征及其在肿瘤中的作用。

1 5-hmC

1.1 5-hmC的主要生物学功能

1952年,人类在噬菌体DNA中发现5-hmC的存在。由于受技术限制,5-hmC研究一直未得到重视。初步研究发现5-hmC参与了DNA去甲基化过程,能降低MeCP蛋白的甲基化结合结构域(MBD)与甲基化DNA的亲和性,具有潜在的参与基因表达调控和转录调节功能。5-hmC亦可能参与基因表达调控过程,已成为当前表观遗传学领域的研究热点之一。最近发现TET蛋白酶家族(TET1、2、3)通过催化5-mC产生5-hmC,逆转甲基化状态,引起人们对5-hmC的研究兴趣。

5-mC被称为“第5碱基”,长期认为是位于基因组DNA唯一的表观遗传共价修饰。5-mC常见于哺乳动物CpG岛的二核苷酸,除此以外,非CpG甲基化只见于多能干细胞中[13-14]。CpG岛甲基化在基因转录沉默、RNA剪接、DNA修复、基因组印记和X染色体失活中有重要作用,参与分化、发育和疾病过程,包括恶性肿瘤[15-18]。研究发现在DNA甲基转移酶家族(DNMT)作用下,以S-腺苷甲硫氨酸(SAM)提供甲基供体,将其转移到脱氧胞嘧啶环第5位碳原子上形成甲基化脱氧胞嘧啶,产生5-mC。哺乳动物的甲基转移酶家族有5个成员(DNMT1、DNMT2、DNMT3A、DNMT 3B和DNMT 3L),其中只有DNMT1、DNMT3A和DNMT3B具有甲基转移活性。DNMT1参与维持甲基化状态,DNMT2可与DNA上特异位点结合,但具体作用尚不清楚。甲基化转移酶DNMT3A和DNMT3B高表达于胚胎干细胞(ESCs),参与哺乳动物胚胎发育和细胞分化过程中基因DNA甲基化的建立。DNMT3B是胚胎早期发育所必须,而DNMT3A是胚胎发育晚期所必须;DNMT3L可增强DNMT3A酶活性,本身并无催化活性[19]。研究发现5-mC在人类细胞分化、发育和肿瘤疾病过程中起着极其重要的调节作用,特别是在CpG岛甲基化所致抑癌基因转录失活中。

1.2 5-hmC调控基因表达

5-hmC被称为“第6个碱基”,在2-酮戊二酸(α-ketoglutarate,α-KG)和Fe2+作用下,双加氧酶TET酶家族TET1、2、3可将5-mC羟化生成5-hmC[18-19]。最近研究发现,在人、小鼠大脑及胚胎干细胞中5-hmC高表达,常位于转录起始点[18-19]。研究提示,5-hmC特异性在基因体部及启动子区域富集,深入研究发现基因转录起始点和基因体部的5-hmC水平与基因表达呈正相关[20-21]。然而,Xu等[22]发现看家基因体部的5-hmC水平仍然很低,基因体部的5-hmC水平与基因表达高低也不是简单的线性关系。此外,Stroud等[23]研究发现,5-hmC与组蛋白H3K4me1和H3K27ac修饰呈正相关,同时增强子区域的5-hmC水平反映增强子处于激活或静息状态。因此,5-hmC具有潜在的参与基因表达调控的功能。

1.3 5-hmC在肿瘤中表达缺失

大量研究表明,实体肿瘤中5-hmC缺失,如黑色素瘤、乳腺癌、肝癌、前列腺癌、肺癌和胰腺癌等[6,24-25]。文献报道肠癌组织中5-hmC含量显著下降,甚至结肠癌细胞中几乎无法检测到5-hmC表达[26]。Kudo等[27]通过免疫印迹法研究肝癌、肠癌、肺癌等组织与对应的正常组织中5-hmC水平,发现肿瘤组织中5-hmC水平显著降低。此外,文献报道脑胶质瘤常见5-hmC缺失,且5-hmC缺失与肿瘤患者不良预后密切相关[28-29]。Lian等[6]研究发现,黑色素瘤中5-hmC水平显著降低,且5-hmC缺失与肿瘤细胞分化密切相关;TET2和异柠檬酸脱氢酶(isocitrate dehydrogenase,IDH)2表达下调可导致5-hmC缺失,重新导入活性TET2和IDH2,重建黑色素瘤细胞中5-hmC,能显著抑制黑色素瘤生长[28]。由此推测,5-hmC参与黑色素瘤的发展,IDH2和TET蛋白下调是5-hmC水平降低的机制之一。此外,大量文献报道血液系统恶性肿瘤亦常伴有5-hmC缺失[29-32]。

1.4 肿瘤中5-hmC缺失的机制

在α-KG和Fe2+作用下,TET1、2、3可将5-mC催化生成5-hmC。研究发现,肿瘤中常见TET酶表达异常,影响其介导DNA去甲基化,导致肿瘤发生、发展[32]。此外,野生型的IDH(包括IDH1和IDH2)可催化异柠檬酸,产生a-KG,然而突变型IDH1、IDH2催化异柠檬酸产生 2-羟戊二酸(2-hydroxyglutarate,2-HG),而 2-HG是一种在结构上类似α-KG的分子,能拮抗α-KG,竞争性抑制多种α-KG依赖性的双加氧酶TET蛋白酶家族[6,29,33-35]。恶性肿瘤常见IDH1和IDH2编码基因高频突变,不仅失去正常的酶催化活性,还因产生2-HG而降低了α-KG的产量[36]。因此,肿瘤组织中的TET1、2、3和IDH1、IDH2酶转录水平下调可能是导致5-hmC缺失的原因。此外,文献报道miR-22通过拮抗TET酶介导5-hmC缺失,从而促进乳腺癌侵袭转移,还可导致miR-200启动子5-hmC缺失,影响miR-200表达,miR-200可负性调控肿瘤细胞上皮细胞间质转化(epithelial-tomesenchymal transition,EMT)[37]。研究发现,维生素C可影响胚胎干细胞和体细胞基因组重排,在TET酶去甲基化过程中发挥重要作用[38-39]。总之,大量文献证实,5-hmC可能对恶性肿瘤形成和发生、发展具有负性调控作用,可能原因是肿瘤组织中5-hmC缺失,5-mC水平升高,导致基因组处于高甲基化状态,大量抑癌基因失活或凋亡相关基因未被激活,促进癌细胞增殖,免于被凋亡或受抑癌基因调控。5-hmC在肿瘤的发生、发展中的具体机制仍不清楚,需要进一步深入研究。

2 m-6-A

2.1 m-6-A的生物学功能

1974年,科学家首次发现m-6-A,当时不能确定这一发现是否是其他RNA分子污染的结果[40]。RNA的m-6-A修饰常被称为mRNA的第5种碱基,几乎存在于所有高等真核生物体中。研究发现m-6-A常位于mRNA的终止密码子附近,在多种脊椎动物mRNA的高度保守域,是经过数亿年进化选择保存下来的,m-6-A修饰对人类及其他动物都至关重要[41]。另外,研究发现长链非编码RNA存在m-6-A修饰,影响其稳定性和代谢[41-42]。RNA的m-6-A修饰的发现成为开辟RNA甲基化研究新的途径,m-6-A修饰作为RNA新一层次的调控,被称为RNA表观遗传[43-44]。

文献报道约20%的人类mRNA可被常规的甲基化修饰,约7 000多种不同的mRNA分子有m-6-A修饰[42],这意味着m-6-A修饰可能广泛地影响着基因表达。高通量测序发现m-6-A修饰主要位于mRNAs外显子区域和3’-非编码区域(3’-UTR)[12]。因此,RNA的m-6-A修饰有可能影响miRNA与靶基因的mRNA互补结合序列。研究发现RNA的m-6-A修饰可改变RNA结构通过弱化碱基配对,此外RNA的m-6-A修饰可增加蛋白质结合识别位点,绑定蛋白招募其他蛋白复合物参与细胞生物学过程,包括mRNA剪接、RNA输出、稳定性和免疫耐受[45]。

2.2 影响m-6-A表达的因素

甲基转移酶METTL3参与维持人类RNA的m-6-A[46-47]。METTL3参与调控细胞生存和发育的相关信号通路[48]。研究发现RNA干扰敲除甲基转移酶METTL3,可增加细胞凋亡并促进其死亡[49],提示m-6-A修饰对细胞生存起着极其重要的调控作用。此外,甲基转移酶METTL14与METTL3形成的甲基转移酶复合物会影响m-6-A表达,参与调节RNA代谢[50]。

研究人员鉴定mRNA去甲基化酶,发现FTO可将mRNA中m-6-A擦除,逆转到常规腺苷[43-44]。目前,关于FTO研究较多的是其突变导致肥胖和糖尿病[51-54]。据估计,全球10亿人有FTO突变,此突变是肥胖症及2型糖尿病的主要病因。此外,另一种去甲基化酶ALKBH5,类似于FTO,是ALKB同源基因家族,可逆转RNA的m-6-A修饰,参与RNA的输出和代谢,文献报道ALKBH5缺失损害老鼠的生殖功能[55]。

2.3 肿瘤中m-6-A异常表达

RNA作为连接基因组和蛋白组的桥梁,RNA的m-6-A修饰是可逆修饰,在维持机体生理状态及某些病理过程中发挥着重要作用。文献报道m-6-A出现在许多人类疾病基因编码的mRNA中,包括大脑疾病(如孤独症、阿尔茨海默病、精神分裂症)、糖尿病、肥胖以及癌症[56-57]。mRNA非常复杂,RNA甲基化异常可引起多种疾病。目前,关于RNA的m-6-A修饰在肿瘤发生、发展中的作用鲜见报道。仅有少量报道提示FTO与乳腺癌等肿瘤发生、发展关系密切,但具体机制尚未阐明[58-60]。

3 展望

随着表观遗传学的研究深入及高通量测序技术的发展,人类有望揭开5-hmC和m-6-A表观改变在生命活动过程和疾病(包括恶性肿瘤)过程中的重要作用。深入研究5-hmC和m-6-A表观遗传异常改变的去甲基化酶,包括DNA去甲基化酶TET酶家族和RNA去甲基化酶FTO和ALKBH5,参与肿瘤发生、发展和转移复发的分子机制很有必要。因此,应用修复异常表观遗传改变的药物,将来有可能逆转恶性分化的肿瘤细胞,成功治愈或改造肿瘤患者。

[1] Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J].Nat Rev Genet, 2010, 11(3): 204-220.

[2] Tuck MT. The formation of internal 6-methyladenine residues in eucaryotic messenger RNA[J]. Int J Biochem, 1992, 24(3):379-386.

[3] Jia G, Fu Y, He C. Reversible RNA adenosine methylation in biological regulation[J]. Trends Genet, 2013, 29(2): 108-115.

[4] Jaenisch R, Bird A. Epigenetic regulation of gene expression:how the genome integrates intrinsic and environmental signals[J]. Nat Genet, 2003, 33(Suppl): 245-254.

[5] Smith ZD, Meissner A. DNA methylation: roles in mammalian development[J]. Nat Rev Genet, 2013, 14(3):204-220.

[6] L i a n C G, X u Y, C e o l C, e t a l. L o s s o f 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma[J]. Cell, 2012, 150(6): 1135-1146.

[7] Baylin SB, Jones PA. A decade of exploring the cancer epigenome-biological and translational implications[J]. Nat Rev Cancer, 2011, 11(10): 726-734.

[8] Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps[J]. Nat Rev Genet, 2007, 8(4):286-298.

[9] Ito S, D’Alessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification[J]. Nature, 2010, 466(7310): 1129-1133.

[10] Zhang H, Zhang X, Clark E, et al. TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine[J]. Cell Res, 2010, 20(12): 1390-1393.

[11] Wang X, Lu Z, Gomez A, et al. N6-methyladenosinedependent regulation of messenger RNA stability[J]. Nature,2014, 505(7481): 117-120.

[12] Niu Y, Zhao X, Wu YS, et al. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function[J].Genomics Proteomics Bioinformatics, 2013, 11(1): 8-17.

[13] Ramsahoye BH, Biniszkiewicz D, Lyko F, et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a[J]. Proc Natl Acad Sci U S A, 2000, 97(10): 5237-5242.

[14] Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences[J]. Nature, 2009, 462(7271): 315-322.

[15] Bird A. DNA methylation patterns and epigenetic memory[J].Genes Dev, 2002, 16(1): 6-21.

[16] Ndlovu MN, Denis H, Fuks F. Exposing the DNA methylome iceberg[J]. Trends Biochem Sci, 2011, 36(7): 381-387.

[17] Laurent L, Wong E, Li G, et al. Dynamic changes in the human methylome during differentiation[J]. Genome Res,2010, 20(3): 320-331.

[18] Guo JU, Su Y, Zhong C, et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain[J]. Cell, 2011, 145(3): 423-434.

[19] Auclair G, Weber M. Mechanisms of DNA methylation and demethylation in mammals[J]. Biochimie, 2012, 94(11):2202-2211.

[20] Jin SG, Wu X, Li AX, et al. Genomic mapping of 5-hydroxymethylcytosine in the human brain[J]. Nucleic Acids Res, 2011, 39(12): 5015-5024.

[21] Song CX, Szulwach KE, Fu Y, et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine[J]. Nat Biotechnol, 2011, 29(1): 68-72.

[22] Xu Y, Wu F, Tan L, et al. Genome-wide regulation of 5hmC,5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells[J]. Mol Cell, 2011, 42(4): 451-464.

[23] Stroud H, Feng S, Morey Kinney S, et al.5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells[J]. Genome Biol,2011, 12(6): R54.

[24] Yang H, Liu Y, Bai F, et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation[J]. Oncogene, 2013, 32(5): 663-669.

[25] Hsu CH, Peng KL, Kang ML, et al. TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases[J]. Cell Rep, 2012, 2(3): 568-579.

[26] Wen L, Li X, Yan L, et al. Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain[J]. Genome Biol, 2014, 15(3):R49.

[27] Kudo Y, Tateishi K, Yamamoto K, et al. Loss of 5-hydroxymethylcytosine is accompanied with malignant cellular transformation[J]. Cancer Sci, 2012, 103(4): 670-676.

[28] Orr BA, Haffner MC, Nelson WG, et al. Decreased 5-hydroxymethylcytosine is associated with neural progenitor phenotype in normal brain and shorter survival in malignant glioma[J]. PLoS One, 2012, 7(7): e41036.

[29] Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases[J]. Cancer Cell,2011, 19(1): 17-30.

[30] Song SJ, Ito K, Ala U, et al. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation[J].Cell Stem Cell, 2013, 13(1): 87-101.

[31] Huang H, Jiang X, Li Z, et al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia[J]. Proc Natl Acad Sci U S A, 2013, 110(29): 11994-11999.

[32] Ko M, Huang Y, Jankowska AM, et al. Impairedhydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2[J]. Nature, 2010, 468(7325): 839-843.

[33] Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impairhematopoietic differentiation[J]. Cancer Cell, 2010, 18(6): 553-567.

[34] Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers[J]. N Engl J Med, 2009, 360(22):2289-2301.

[35] Mullighan CG. TET2 mutations in myelodysplasia and myeloid malignancies[J]. Nat Genet, 2009, 41(7): 766-767.

[36] Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme[J]. Science, 2008,321(5897): 1807-1812.

[37] Song SJ, Poliseno L, Song MS, et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling[J]. Cell, 2013,154(2): 311-324.

[38] Blaschke K, Ebata KT, Karimi MM, et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells[J]. Nature, 2013, 500(7461): 222-226.

[39] Chen J, Guo L, Zhang L, et al. Vitamin C modulates TET1 function during somatic cell reprogramming[J]. Nat Genet,2013, 45(12): 1504-1509.

[40] Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells[J]. Proc Natl Acad Sci U S A, 1974, 71(10):3971-3975.

[41] Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons[J]. Cell, 2012, 149(7): 1635-1646.

[42] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al.Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012, 485(7397): 201-206.

[43] He C. Grand challenge commentary: RNA epigenetics?[J].Nat Chem Biol, 2010, 6(12): 863-865.

[44] Yi C, Pan T. Cellular dynamics of RNA modification[J]. Acc Chem Res, 2011, 44(12): 1380-1388.

[45] Pan T. N6-methyl-adenosine modification in messenger and long non-coding RNA[J]. Trends Biochem Sci, 2013, 38(4):204-209.

[46] Bokar JA, Shambaugh ME, Polayes D, et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase[J]. RNA, 1997,3(11): 1233-1247.

[47] Bokar JA, Rath-Shambaugh ME, Ludwiczak R, et al.Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex[J]. J Biol Chem, 1994, 269(26): 17697-17704.

[48] Hongay CF, Orr-Weaver TL. Drosophila Inducer of MEiosis 4(IME4) is required for Notch signaling during oogenesis[J].Proc Natl Acad Sci U S A, 2011, 108(36): 14855-14860.

[49] Lavi U, Fernandez-Muñoz R, Darnell JE, Jr. Content of N-6 methyl adenylic acid in heterogeneous nuclear and messenger RNA of HeLa cells[J]. Nucleic Acids Res, 1977, 4(1): 63-69.

[50] Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014, 24(2): 177-189.

[51] Benedict C, Axelsson T, Söderberg S, et al. Fat mass and obesity-associated gene(FTO) is linked to higher plasma levels of the hunger hormone ghrelin andlower serum levels of the satiety hormone leptin in older adults[J]. Diabetes,2014, 63(11): 3955-3959.

[52] Church C, Moir L, McMurray F, et al. Overexpression of Fto leads to increased food intake and results in obesity[J]. Nat Genet, 2010, 42(12): 1086-1092.

[53] Fischer J, Koch L, Emmerling C, et al. Inactivation of the Fto gene protects from obesity[J]. Nature, 2009, 458(7240): 894-898.

[54] Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity[J].Nat Genet, 2007, 39(6): 724-726.

[55] Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29.

[56] Chandola U, Das R, Panda B. Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease[J]. Brief Funct Genomics, 2014 Oct 10. pii: elu039. [Epub ahead of print].

[57] Klungland A, Dahl JA. Dynamic RNA modifications in disease[J]. Curr Opin Genet Dev, 2014 Jun; 26:47-52. doi:10.1016/j.gde.2014.05.006. Epub 2014 Jul 5.

[58] Li G, Chen Q, Wang L, et al. Association between FTO gene polymorphism and cancer risk: evidence from 16 277 cases and 31 153 controls[J]. Tumour Biol, 2012, 33(4): 1237-1243.

[59] Garcia-Closas M, Couch FJ, Lindstrom S, et al. Genome-wide association studies identify four ER negative-specific breast cancer risk loci[J]. Nat Genet, 2013, 45(4): 392-398, 398e1-2.

[60] Hernández-Caballero ME, Sierra-Ramírez JA. Single nucleotide polymorphisms of the FTO gene and cancer risk:an overview[J]. Mol Biol Rep, 2015, 42(3): 699-704.

猜你喜欢

基转移酶表观甲基化
氨基转移酶升高真有这么可怕吗
绿盲蝽为害与赤霞珠葡萄防御互作中的表观响应
法尼基化修饰与法尼基转移酶抑制剂
钢结构表观裂纹监测技术对比与展望
例析对高中表观遗传学的认识
DNA甲基转移酶在胚胎停育绒毛组织中的表达差异及临床意义
鼻咽癌组织中SYK基因启动子区的甲基化分析
胃癌DNA甲基化研究进展
表观遗传修饰在糖脂代谢中的作用
基因组DNA甲基化及组蛋白甲基化