(11)
5案例分析
通过对案例的发展规划过程进行研究,可分析所建模型的有效性。假定当前需要规划发展某侦察预警监视体系,该体系的能力需求内容、可选装备类型、装备与能力之间的映射关系如图5所示。
(1) 参数设定
由图5可知,N=7,M=7。假设采集了近3年的ω取值,见表1。
表1 近3年ω参数设定
则υ=(0.21,0.15,0.13,0.09,0.08,0.16,0.18)。令
图5 决策变量-能力需求之间的关系Fig.5 Relationship between decision variable and capability requirement
表和参数设定
(2) 算法验证
在这里采用改进的遗传算法对模型进行验证。在文献[13]中,基于捕食搜索策略(predatory search,PS)对遗传算法(genetic algorithm,GA)进行了改进,具体思想为:将捕食搜索策略应用到遗传算法中,克服遗传算法局部搜索能力弱的问题。首先以较大的交叉概率和较小的变异概率进行全局搜索;一旦发现一个较优解,则改为以较小的交叉概率和较大的变异概率进行局部搜索; 如果在一定次数
的搜索过程中较优解得不到改善,则恢复以较大的交叉概率和较小的变异概率进行全局搜索。基于捕食搜索策略的遗传算法(PSGA)过程如图6所示。
图6 PSGA算法流程图Fig.6 Flow diagram of PSGA arithmetic
为了便于比较,这里采用PSGA算法与传统遗传算法(GA)、蚁群算法(ant colony algorithm, CA)、微分进化算法(differential evolution algorithm,DE),分别对这一案例进行求解。根据文献[14-16],各算法的参数设置见表3。
表3 PSGA/GA/CA/DE参数设置
首先分析算法的求解稳定性。分别对4种算法独立运行10次,获得每次运算的体系总军事价值最优值,见图7。对10次运算所得最优值的最大值、均值和方差进行计算,结果见表4。可见,PSGA的方差值是4类算法中最小的,代表PSGA求解稳定性最好。
表4 PSGA/GA/CA/DE独立运算结果
图7 PSGA,GA,CA,DE求解稳定性比较Fig.7 Stability comparison among PSGA,GA, CA, and DE
然后分析算法的求解效率性。将4类算法10次独立运行中得出最大体系总军事价值的求解过程
提取出来进行比较,见图8。可见,在收敛速度方面,PSGA在第64次达到收敛,而GA,CA,DE 3类算法分别在81,90,72次才达到收敛。而在最优值的搜寻上,PSGA,GA,CA,DE 4类算法分别是0.710 0,0.521 0,0.532 6,0.624 1。所以,无论是收敛速度,还是最优值的搜寻能力,PSGA均优于其他3类算法,PSGA具有更高的求解效率性。
图8 PSGA,GA,CA,DE求解效率性比较Fig.8 Efficiency comparison among PSGA, GA, CA, and DE
(3) 规划方案分析
分析4类算法所得的最优发展规划方案,见表5。可知4类算法都倾向于优先发展预警机、侦察卫星2类武器装备。并且PSGA算法在预警机装备上投入资金最多,所得体系总军事价值也最大。规划方案结果的得出与前面设置的参数有关,实际操作时应根据作战实际严格设置参数,才能得出有效的结论。
表5 最优发展规划方案
6结束语
将Markowitz理论应用于武器装备体系规划,既为Markowitz投资组合理论开拓一个新的应用领域,也为武器装备体系发展规划找到一个新的定量决策模型,且较好地解决了战略走势变化带来的不确定影响这一问题,所建模型可为类似问题规划提供模型参考。
本文从理论和方法的角度对武器装备体系规划做了探索。下一步的研究应包括:如何用数学方法科学精确地描述军事价值;如何建立可操作性强、更反映规划实际的数学模型;如何确定投入资金与武器能力值之间映射关系的函数——即文中的Logistic函数中的变量系数;如何综合考虑并描述形势变化带来的其他不确定影响因素;如何构建包含更多规划目标和约束条件的模型;如何改进算法以实现更快更稳的寻优。
参考文献:
[1]李仁传,张合勇,殷燕. 对武器装备体系结构优化几个基本问题的理性认识[J]. 军事运筹与系统工程,2011,25(2):5-10.
LI Ren-chuan,ZHANG He-yong,YIN Yan. An Understanding on Several Basic Problems of Weapon System of System Structural Optimization [J]. Military Operations Research and Systems Engineering,2011,25(2):5-10.
[2]周宇,谭跃进,姜江,等. 面向能力需求的武器装备体系组合规划模型与算法[J]. 系统工程理论与实践,2013,33(3):809-816.
ZHOU Yu,TAN Yue-jin,JIANG Jiang,et al. Capability Requirements Oriented Weapon System of Systems Portfolio Planning Model and Algorithm [J]. Systems Engineering—Theory and Practice,2013,33(3):809-816.
[3]熊健,赵青松,葛冰峰,等. 基于多目标优化模型的武器装备体系能力规划[J]. 国防科技大学学报,2011,33(3):140-144.
XIONG Jian,ZHAO Qing-song,GE Bing-feng,et al. Weapon Equipment System-of-Systems Capability Planning Based on Multi-Objective Optimization Model [J]. Journal of National University of Defense Technology,2011,33(3):140-144.
[4]LEE J,KANG S H,ROSENBERGER J,et al. A Hybrid Approach of Goal Programming for Weapon Systems Selection[J]. Computers and Industrial Engineering,2010,58(3):521-527.
[5]SNYDER D,MILLS P,RESNICK A C,et a1. Assessing Capabilities and Risks in Air Force Programming[R]. Pittsburgh:RAND Corporation,2009.
[6]STRUBE C M,LOREN J R.Portfolio Influences on Air Force Capabilities-Based Assessment and Capabilities-Based Planning Activities[C]∥Proceedings of the 6th International Conference on System of Systems Engineering,Albuquerque,New Mexico,USA,2011:83-89.
[7]United States Government Accountability Omce. Defense Acquisitions Assessments of Selected Weapon Programs[EB/OL].[2012-4-18](2014-11-28).http://
www.gao.gov/assets/320/317081.pdf.
[8]GREINER M A,FOWLER J W,SHUNK D L,et al.A hybrid Approach Using the Analytic Hierarchy Process and Integer Programming to Screen Weapon Systems Projects[J].IEEE Transactions on Engineering Management,2003,50(2):192-203.
[9]张媛,刘文彪,张立民. 基于主客观综合赋权的CGF态势评估建模研究[J]. 系统工程与电子技术,2013,35(1):85-90.
ZHANG Yuan,LIU Wen-biao,ZHANG Li-min. Situation Assessment Modeling for CGF Base on the Subjective and Objective Integrated Weight [J]. Systems Engineering and Electronics,2013,35(1):85-90.
[10]刘旭,李为民,吴晓东. 雷达抗干扰性能多层次灰色评估模型研究[J]. 现代防御技术,2011,39(6):179-184.
LIU Xu,LI Wei-min,WU Xiao-dong. Multilevel Gray Evaluation Model for Radar Antijamming Capability [J]. Modern Defence Technology,2011,39(6):179-184.
[11]吴晓. Markowitz投资组合理论在房地产投资组合决策中的应用[J]. 深圳职业技术学院学报,2011(1):36-42.
WU Xiao. Application of Markowitz Portfolio Theory in Real Estate Portfolio Decision [J]. Journal of Shenzhen Polytechnic,2011(1):36-42.
[12]杨明辉,张智光,任百林,等. Markowitz组合证券投资决策模型的修正[J]. 南京林业大学学报:自然科学版,2005,29(1):51-54.
YANG Ming-hui, ZHANG Zhi-guang, REN Bai-lin, et al. A Study on Revising Markowitz’s Portfolio Selection Model [J]. Journal of Nanjing Forestry University:Natural Sciences ed, 2005,29(1):51-54.
[13]刘旭,李为民,宋文静. 考虑发射区部分重叠的防空作战目标分配[J]. 空军工程大学学报:自然科学版,2013,14(6):30-34.
LIU Xu,LI Wei-min,SONG Wen-jing. Target Assignment of Defense Combat in Overlapping Shooting-Area [J]. Journal of Air Force Engineering University:Natural Science ed,2013,14(6):30-34.
[14]余家祥,赵晓哲,史红权,等. 基于遗传算法的编队区域防空武器分配方法[J]. 现代防御技术,2013,41(1):82-87.
YU Jia-xiang,ZHAO Xiao-zhe,SHI Hong-quan,et al. Air Defense Weapon Allocation Method for Warship Task Formation Based on Genetic Algorithm [J]. Modern Defence Technology,2013,41(1):82-87.
[15]李红亮,宋贵宝,曹延杰. 多反舰导弹攻击多目标协同航路规划[J]. 系统工程与电子技术,2013,35(10):2013-2019.
LI Hong-liang,SONG Gui-bao,CAO Yan-jie. Cooperative Path Planning of Multiple Anti-Ship Missiles to Multiple Targets [J]. Systems Engineering and Electronics,2013,35(10):2013-2019.
[16]黄仁全,李为民,周晓光,等. 基于微分进化算法的防空导弹火力分配[J]. 空军工程大学学报:自然科学版,2009,10(5):41-44.
HUANG Ren-quan,LI Wei-min,ZHOU Xiao-guang,et al. Research on Firepower Distribution Model of Surface to Air Missile Based on Differential Evolution Algorithm [J]. Journal of Air Force Engineering University:Natural Science ed,2009,10(5):41-44.
Systems Development Planning Model on Weapon System Under Uncertain Conditions
LIU Xu, LI Wei-min,SONG Wen-jing
(AFEU,Air and Missile Defense School,Shaanxi Xi’an 710051,China)
Abstract:The system development planning on weapon system under uncertain conditions is to study weapon system development planning model considering changing conditions. The systems development planning model of weapon system under certain conditions is built; the logistic function is introduced into the model to reflect the mapping relationship between investment funds and weapon capability. The uncertain conditions for the system development planning are explained with securities market risk investment theory. And the model under uncertain conditions is built based on Markowitz theory. The effectiveness of the proposed model and algorithm are demonstrated by a portfolio planning example of intelligence, surveillance, and reconnaissance weapon system.
Key words:uncertain conditions; weapon system of systems; development planning model; investment funds; weapons capability; Logistic; Markowitz
中图分类号:E92;E917
文献标志码:A
文章编号:1009-086X(2015)-05-0026-07
doi:10.3969/j.issn.1009-086x.2015.05.005
通信地址:710051陕西西安长乐东路甲字1号空军工程大学防空反导学院研2队E-mail:liuxu193@126.com
作者简介:刘旭(1987-),男,湖南湘潭人。博士生,研究方向为作战力量建设。
*收稿日期:2014-12-07;修回日期:2015-03-31