APP下载

动脉粥样硬化斑块钙化与microRNA

2015-01-25孙启玉贾兴旺田亚平承德医学院附属医院检验科河北承德067000

中国老年学杂志 2015年16期
关键词:骨细胞斑块小鼠

孙启玉 贾兴旺 田亚平 (承德医学院附属医院检验科,河北 承德 067000)

目前研究表明急性心血管事件发生的主要原因是冠状动脉粥样硬化(AS)斑块的破裂、出血、血栓形成,而和冠状AS的严重程度不成正比。冠状AS斑块的钙化是其病理发生到一定程度的表现。钙化使斑块变硬、变脆,容易碎裂导致急性心血管事件的发生。

1 AS斑块钙化与心血管事件

病理学上认为AS斑块钙化发生时,在钙化与非钙化交界面由于不同的组织密度使其容易受压破裂。现在越来越多的证据表明钙化可作为AS斑块稳定性的独立预测指标,对冠脉事件的发生有预测价值。Shemesh等〔1〕对稳定型冠心病患者随访观察发现CAC(CAC)积分随时间进展变化。冠状动脉钙化对有症状患者的预测能力得到了广泛研究。Georgiou等〔2〕对192例病人进行随访研究50个月,发现CAC积分和冠脉事件的发生密切相关,高积分病人发生不良事件的风险是低或零积分病人的13.2倍。在一项对458例有急性胸痛且排除急性冠脉综合征(ACS)的病人研究中,有AS斑块钙化的病人比无钙化者更易发生心血管不良事件,其危险比(HR)分别是86.96与58.06〔3〕。对稳定型心绞痛病人,Rijlaarsdam-Hermsen 等〔4〕的研究表明,CAC积分为阴性的病人在随访44个月时无不良事件的发生,其阴性预测价值是100%。CAC对于无症状病人冠脉事件也有很好的预测能力。一项5 000余例患者的前瞻性观察研究发现,与CAC积分<100的患者相比,>100的患者4.3年后发生冠脉事件的相对危险度为9.5~10.7〔5〕。Budoff等〔6〕对无症状患者的研究也发现死亡率与CAC积分呈正相关。

鉴于大量有关AS斑块钙化与不良事件发生风险的文献报道。2005美国心脏学会的一份关于临床检测女性冠状动脉疾病的声明写到低CAC和低不良事件发生风险相关,高CAC预示高风险的不良事件。建议对Framingham评分为中度的病人用CAC来评价AS负荷〔7〕。欧洲心血管指南也写到CAC积分是无症状患者未来发生心血管事件风险评价的重要指标,并独立于传统的风险因素〔8〕。

2 AS斑块钙化形成机制及危险因素

以前人们认为血管钙化是磷酸盐矿物质在坏死组织沉积形成的,近年来研究表明AS钙化是一种与新骨形成极为相似的受调控的主动性代谢过程,其钙盐的主要成分是羟磷灰钙,而不是原来认为的磷酸钙。AS钙化出现较早,亚临床的AS早期就出现了骨相关蛋白的表达,当脂质条纹形成时,组织学上就可以检测到钙化的存在〔8〕。

血管平滑肌细胞(VSMC)表型的改变认为是AS钙化的关键步骤。Bobryshev等〔9〕用电镜观察 ApoE基因敲除鼠 AS模型,发现AS脂质斑块周围的平滑肌细胞表现出软骨样细胞特征,在细胞间隙有许多含有羟磷灰石结晶的小囊泡出现,认为平滑肌细胞分化为软骨细胞,导致了斑块钙化的形成。发生表型转换的平滑肌细胞可持续表达和钙化相关的核因子(NF)-κB受体活化因子配体(RANKL)、核结合因子 α1(Cbfα1,Runx2)、骨桥蛋白(OPN)、骨钙素、碱性磷酸酶及骨保护素(OPG)等〔10,11〕。这些蛋白调节骨基质的形成,参与钙化。

炎症和AS斑块钙化的发生有关。脂质过氧化产物的沉积及氧化应激参与粥样斑块的形成。炎症反应导致大量活性氧簇(ROS)产生。体外研究表明H2O2可以通过激活Cbfα1促进VSMC由收缩型向成骨型转化〔12〕。抗氧化作用的高密度脂蛋白及ω-3多不饱和脂肪酸有抑制血管钙化的作用〔13,14〕。氧化低密度脂蛋白能促进β-甘油磷酸盐诱导的VSMC成骨样转化〔15〕。血管钙化,矿物质基质的形成又可作用于单核细胞促进炎症因子的释放〔16〕。

高血糖、血脂是AS发生的危险因素,同时也是硬化斑块钙化的危险因素。糖尿病患者发生CAC比非糖尿病患者显著增加〔17〕。高糖在体外可以通过增加VSMC中Cbfα1转录因子的表达,呈时间依赖性促进VSMC的成骨性转化〔18〕。一项6 093例个体的研究表明高密度脂蛋白胆固醇(HDL-C)与CAC有很好的相关性,要高于低密度脂蛋白胆固醇(LDL-C)〔19〕。Orakzai等〔20〕对非高密度脂蛋白(Non-HDL-C)即包含致冠状动脉硬化载脂蛋白B的所有颗粒(极低密度脂蛋白、低密度脂蛋白、乳糜颗粒、脂蛋白a等)和LDL-C、HDL-C、甘油三酯进行比较,认为Non-HDL-C和CAC相关性最强。研究表明血清胆红素水平〔21〕及游离甲状腺素水平〔22〕和CAC呈负相关,其水平降低是AS斑块钙化新的危险因素。

3 AS斑块钙化相关因子

RANKL/OPG参与AS斑块钙化的研究较多。RANKL也称为肿瘤坏死因子超家族成员(TNFSF)11,是前体破骨细胞分化、成熟的启动因子,其主要生理功能之一是促进破骨细胞分化,刺激破骨细胞活化。在不稳定动脉粥样斑块中存在RANKL的表达,来源于转化的VSMC和内皮细胞,这对于斑块中破骨细胞的生成和功能有重要作用〔23〕。RANKL可以和其跨膜受体RANK结合,通过细胞内信号转导激活MAPK,NF-κB,调节多种细胞活性。这些细胞主要是单核细胞来源的破骨细胞前体细胞、T细胞、B细胞和树突细胞〔24〕。RANKL的促破骨细胞作用使其表现为抗钙化因子,能够降低动脉粥样斑块的不稳定性。然而Sandberg等〔25〕的研究表明RANKL可以增加单核细胞趋化因子(MCP)-1及基质金属蛋白酶(MMP)的表达从而诱导斑块的不稳定性。因此RANKL在AS的确切机制有待研究。

OPG是破骨细胞生成抑制因子,在骨代谢调节中起关键性作用,可与RANKL高度亲和而阻碍RANKL同RANK的结合。OPG基因敲除小鼠有严重的骨质疏松,同时2/3的小鼠肾动脉及主动脉中膜发生钙化〔26〕。OPG能抑制维生素D诱导血管钙化小鼠模型的动脉钙化,而血清中钙磷浓度没有发生变化,表明OPG对血管钙化的抑制作用不是通过降低血钙或血磷水平达到的〔27〕。OPG也可抑制载脂蛋白(Apo)E基因缺陷小鼠动脉粥样硬化斑块的钙化〔28〕,表明OPG能够抑制钙化,具有保护作用。Dhore等〔29〕对尸解标本的研究发现,在血管骨样组织钙沉积周围的细胞基质中可以检测到OPG/RANKL,进一步证实OPG/RANKL系统参与 AS和钙化的过程。Jono等〔30〕检测了201例行冠状动脉造影患者的血清OPG水平,研究结果显示冠状动脉狭窄的患者血清OPG水平明显高于无冠状动脉狭窄者,且随着冠脉病变支数及严重程度增加。Mohammadpour等〔31〕的研究表明血清OPG/RANKL比值和CAC显著相关,血清OPG/RANKL有可能成为新的预测心血管事件发生的指标。

OPN、胎球蛋白-A(FA)、人基质γ羧基谷氨酸蛋白(MGP)及瘦素(LP)是除OPG/RANKL系统外和斑块钙化有关且在血中可检测到的蛋白因子。OPN在正常动脉不表达而在钙化的动脉粥样斑块处高表达〔32〕。OPN抑制羟磷灰石的生长,增加其在酸性环境的分解〔33〕。体外实验证明OPN敲除小鼠VSMC更易产生钙化,表明OPN有抑制钙化的血管保护作用〔34〕。Uz等〔35〕认为血清OPN水平可以评价可疑冠心病人冠状动脉钙化程度。Minoretti等〔36〕的研究表明血清OPN水平可以预测稳定心绞痛患者不良心血管事件的发生,具有危险分层的价值。Georgiadou等〔37〕进一步证明血清OPN水平在缺血性心脏疾病有很好预测价值。

FA在肝脏表达后进入血液循环,主要聚集在骨骼。FA的N端富含酸性氨基酸残基,与碱性磷酸钙结合形成可溶性无定形胶体微球,从而增加其溶解度,抑制血清过饱和的钙磷盐沉积。研究表明VSMC摄取FA后其钙化能力降低〔38〕。在血液透析患者,低血清FA水平和CAC相关〔39〕。但另一项研究认为血清FA水平和CAC无关〔35〕。

MGP能够直接抑制血管壁矿物质的沉积,也可通过抑制骨形态发生蛋白(BMP)-2和BMP-4的活性抑制VSMC的成骨性转化〔40,41〕。MGP抑制血管钙化的活性依赖于其谷氨酸残基的羧基化,而维生素 K是催化这一反应的必需辅助因子〔42〕。MGP敲除小鼠动脉自发发生钙化,其平滑肌细胞失去一些收缩型标志物,而Cbfa1、OPN及骨钙素和这些成骨相关的蛋白表达增加〔43〕。一项临床实验表明对于可疑冠心病患者,血清MGP水平和CAC呈负相关〔44〕。但另一项研究却表明血清MGP水平和AS的危险因素相关,而和动脉钙化无关〔45〕。

LP是一种脂肪组织分泌的肽类激素,进入血液循环后作用于LP受体,参与糖、脂肪及能量代谢的调节。LP有增加血管内皮细胞氧自由基生成,促进泡沫细胞形成,诱导内皮细胞增生,MMP表达等多种生物学效应。促进AS发生发展〔46,47〕。体外研究表明LP可通过抑制糖原合成酶(GSK)-3β的活性,呈剂量依赖增加VSMC的成骨性转化〔48〕。在ApoE敲除小鼠动物模型,给予腹腔注射LP能够促进AS斑块钙化的发生〔49〕。对无临床症状患者及2型糖尿病患者的研究表明血清LP水平独立于传统风险因素和 CAC 相关〔50,51〕。Iribarren 等〔52〕的研究表明血清LP水平和年老女性患者的CAC相关,但该作用不是独立的,和血脂、血压、胰岛素抵抗等其他因素相关。

关于血清炎症相关因子作为斑块钙化的指标有争议。Hamirani等〔53〕总结了12篇有关血清炎症因子和CAC的文章,测定的炎症因子包括C反应蛋白(CRP)、MMP-9、纤维蛋白原、MCP-1、人抵抗素、脂蛋白相关磷脂酶A2(Lp-PLA2)、白细胞介素(IL)-6、肿瘤坏死因子(TNF)-α及成纤维细胞生长因子(bFGF),发现炎症因子与斑块钙化的关系是微弱的,建议有计划的大规模研究。Jenny等〔54〕对6 783例不同种族亚临床症状患者的血IL-6,CRP,纤维蛋白原进行研究,发现三者和CAC都有一定相关性,但在排除冠心病风险因素后,只有IL-6和CAC相关。最近,一项对455例个体20种炎性因子的研究表明,IL-6、IL-8和 IL-13与 CAC明显相关,而 CRP缺少联系〔55〕。Li等〔56〕认为CAC和炎症因子CRP的升高可能有着不同的病理生理机制,是两者缺少相关性的原因。血清炎症因子的改变和AS斑块钙化均与心血管事件的发生密切相关。

4 microRNA参与VSMC成骨性转化

microRNAs(miRNAs)是一种小的内源性非编码RNA分子,大约由21~25个核苷酸组成。这些小的miRNA通常靶向一个或者多个mRNA,在翻译水平抑制或断裂靶mRNAs调节基因的表达,参与细胞增殖、分化、迁移和调亡。已发现microRNAs和多种疾病相关。AS斑块钙化由多种蛋白因子参与调节,和蛋白表达密切相关的microRNAs必然发挥重要作用。已发现microRNAs参与VSMC的表型转化。

miR-204在心肌及 VSMC中表达。Cui等〔57〕培养小鼠VSMC细胞发现miR-204在β-甘油磷酸盐诱导的VSMC钙化过程中显著下降,认为miR-204与钙化发生相关。碱性磷酸酶(ALP)是破骨细胞分化前期的标志,骨钙素是成骨细胞分化中期既骨基质形成阶段的标志。抑制miR-204能够增加VSMC的ALP、骨钙素及Runx2的表达。相反,过表达miR-204能抑制VSMC的钙化。Runx2是成骨细胞分化重要转录因子。进一步研究证明miR-204是通过下调Runx2抑制VSMC钙化。miR-125b是除miR-145、miR-23、miR-143外在动脉表达丰富的microRNA之一。培养人冠状动脉VSMC在成骨性转化过程中miR-125b的表达明显下降,抑制内源性miR-125b可以增加VSMC ALP的表达及基质的矿物质化。在体内,ApoE敲除诱导的小鼠动脉钙化模型中,miR-125b含量显著下降。miR-125b参与了VSMC的成骨性转化,该作用可能是通过SP7转录因子实现的〔58〕。最近 Gui等〔59〕应用血管钙化动物模型筛选出miR-135a、miR-762、miR-714和 miR-712为差异表达 microRNAs,并在体外培养VSMC中进行证实。这些microRNA的作用靶点为NCX1、PMCA1和 NCKX4,它们均为和Ca离子通道相关蛋白。miR-135a、miR-762、miR-714和 miR-712与 Ca及 Pi诱导的VSMC成骨性转变相关。

AS斑块钙化的发生是多种蛋白因子及microRNAs相互作用的结果,对其发病机制的了解,有利于寻找血清标志物帮助临床诊断及危险分层,并为靶向药物治疗提供线索,对于降低急性心血管事件的发生非常重要。

1 Shemesh J,Koren-Morag N,Apter S,et al.Accelerated progression of coronary calcification:four-year follow-up in patients with stable coronary artery disease〔J〕.Radiology,2004;233(1):201-9.

2 Georgiou D,Budoff MJ,Kaufer E,et al.Screening patients with chest pain in the emergency department using electron beam tomography:a follow-up study〔J〕.J Am Coll Cardiol,2001;38(1):105-10.

3 Nance JW Jr,Schlett CL,Schoepf UJ,et al.Incremental prognostic value of different components of coronary atherosclerotic plaque at cardiac CT angiography beyond coronary calcification in patients with acute chest pain〔J〕.Radiology,2012;264(3):679-90.

4 Rijlaarsdam-Hermsen D,Kuijpers D,van Dijkman PRM.Diagnostic and prognostic value of absence of coronary artery calcification in patients with stable chest symptoms〔J〕.Neth Heart J,2011;19(5):223-8.

5 Budoff MJ,Shaw LJ,Liu ST,et al.Long-term prognosis associated with coronary calcification:observations from a registry of 25,253 patients〔J〕.J Am Coll Cardiol,2007;49(18):1860-70.

6 Arad Y,Goodman KJ,Roth M,et al.Coronary calcifi cation,coronary disease risk factors,C-reactive protein,and atherosclerotic cardiovascular disease events:the St.Francis Heart Study〔J〕.J Am Coll Cardiol,2005;46(1):158-65.

7 Mieres JH,Shaw LJ,Arai A,et al.Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease:consensus statement from the Cardiac Imaging Committee,Council on Clinical Cardiology,and the Cardiovascular Imaging and Intervention Committee,Council on Cardiovascular Radiology and Intervention,American Heart Association〔J〕.Circulation,2005;111(5):682-96.

8 De Backer G,Ambrosioni E,Borch-Johnsen K,et al.European guidelines on cardiovascular disease prevention in clinical practice.Third Joint Task Force of European and Other Societies on Cardiovascular Disease Prevention in Clinical Practice〔J〕.Eur Heart J,2003;24(17):1601-10.

9 Bobryshev YV.Transdifferentiation of smooth muscle cells into chondrocytes in atherosclerotic arteries in situ:implications for diffuse intimal calcification〔J〕.J Pathol,2005;205(5):641-50.

10 Steitz SA,Speer MY,Curinga G,et al.Smooth muscle cell phenotypic transition associated with calcification upregulation of cbfa1 and downregulation of smooth muscle lineage markers〔J〕.Circ Res,2001;89(12):1147-54.

11 Nakano-Kurimoto R,Ikeda K,Uraoka M,et al.Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition〔J〕.Am J Physiol Heart Circ Physiol,2009;297(5):H1673-84.

12 Byon CH,Javed A,Dai Q,et al.Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling〔J〕.J Biol Chem,2008;283(22):15319-27.

13 Parhami F,Basseri B,Hwang J,et al.High-density lipoprotein regulates calcification of vascular cells〔J〕.Circ Res,2002;91(7):570-6.

14 Abedin M,Lim J,Tang TB,et al.N-3 fatty acids inhibit vascular calcification via the p38-mitogen-activated protein kinase and peroxisome proliferator-activated receptor-gamma pathways〔J〕.Circ Res,2006;98(6):727-9.

15 Bear M,Butcher M,Shaughnessy SG.Oxidized low-density lipoprotein acts synergy istically with beta-glycerophosphate to induce osteoblast differentiation in primary cultures of vascular smooth muscle cells〔J〕.J Cell Biochem,2008;105(1):185-93.

16 Nadra I,Mason JC,Philippidis P,et al.Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways:a vicious cycle of inflammation and arterial calcification〔J〕?Circ Res,2005;96(12):1248-56.

17 Rydén L.What are the risk factors for progression of coronary artery calcification in patients with type 2 diabetes〔J〕?Nat Clin Pract Cardiovasc Med,2008;5(7):370-1.

18 Chen NX,Duan D,O'Neill KD,et al.High glucose increases the expression of Cbfa1 and BMP-2 and enhances the calcification of vascular smooth muscle cells〔J〕.Nephrol Dial Transplant.2006;21(12):3435-42.

19 Allison MA,Wright CM.A comparison of HDL and LDL cholesterol for prevalent coronary calcification〔J〕.Int J Cardiol,2004;95(1):55-60.

20 Orakzai SH,Nasir K,Blaha M,et al.Non-HDL cholesterol is strongly associated with coronary artery calcification in asymptomatic individuals〔J〕.Atherosclerosis,2009;202(1):289-95.

21 Zhang ZY,Bian LQ,Kim SJ,et al.Inverse relation of total serum bilirubin to coronary artery calcification score detected by multidetector computed tomography in males〔J〕.Clin Cardiol,2012;35(5):301-6.

22 Kim ES,Shin JA,Shin JY,et al.Association between low serum free thyroxine concentrations and coronary artery calcification in healthy euthyroid subjects〔J〕.Thyroid,2012;22(9):870-6.

23 Tintut Y,Demer L.Role of osteoprotegerin and its ligands and competing receptors in atherosclerotic calcification〔J〕.J Investig Med,2006;54(7):395-401.

24 Montecucco F,Steffens S,Mach F.The immune response is involved in atherosclerotic plaque calcification:could the RANKL/RANK/OPG system be a marker of plaque instability〔J〕?Clin Dev Immunol,2007;2007:75805.

25 Sandberg WJ,Yndestad A,Qie E,et al.Enhanced T-cell expression of RANK ligand in acute coronary syndrome:possible role in plaque destabilization〔J〕.Arterioscler Thromb Vasc Biol,2006;26(4):857-63.

26 Bucay N,Sarosi I,Dunstan CR,et al.Osteoprotegerindeficient mice develop early onset osteoporosis and arterial calcification〔J〕.Genes Dev,1998;12(9):1260-8.

27 Price PA,June HH,Buckley JR,et al.Osteoprotegerin inhibits artery calcification induced by warfarin and by vitamin D〔J〕.Arterioscler Thromb Vasc Biol,2001;21(10):1610-6.

28 Bennett BJ,Scatena M,Kirk EA,et al.Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/-mice〔J〕.Arterioscler Thromb Vasc Biol,2006;26(9):2117-24.

29 Dhore CR,Cleutjens JP,Lutgens E,et al.Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques〔J〕.Arterioscler Thromb Vasc Biol,2001;21(12):1998-2003.

30 Jono S,Ikari Y,Shioi A,et al.Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease〔J〕.Circulation,2002;106(10):1192-4.

31 Mohammadpour AH,Shamsara J,Nazemi S,et al.Evaluation of RANKL/OPG serum concentration ratio as a new biomarker for coronary artery calcification:a pilot study〔J〕.Thrombosis,2012;2012:306263.

32 Cho HJ,Kim HS.Osteopontin:a multifunctional protein at the crossroads of inflammation,atherosclerosis,and vascular calcification〔J〕.Curr Atheroscler Rep,2009;11(3):206-13.

33 Steitz SA,Speer MY,McKee MD,et al.Osteopontin inhibits mineral deposition and promotes regression of ectopic calcification〔J〕.Am J Pathol,2002;161(6):2035-46.

34 Speer MY,Chien YC,Quan M,et al.Smooth muscle cells deficient in osteopontin have enhanced susceptibility to calcification in vitro〔J〕.Cardiovasc Res,2005;66(2):324-33.

35 Uz O,Kardesoglu E,Yiginer O,et al.The relationship between coronary calcification and the metabolic markers of osteopontin,fetuin-A,and visfatin〔J〕.Turk Kardiyol Dern Ars,2009;37(6):397-402.

36 Minoretti P,Falcone C,Calcagnino M,et al.Prognostic significance of plasma osteopontin levels in patients with chronic stable angina〔J〕.Eur Heart J,2006;27(7):802-7.

37 Georgiadou P,Iliodromitis EK,Kolokathis F,et al.Osteopontin as a novel prognostic marker in stable ischaemic heart disease:a 3-year followup study〔J〕.Eur J Clin Invest,2010;40(4):288-93.

38 Reynolds JL,Skepper JN,McNair R,et al.Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification〔J〕.J Am Soc Nephrol,2005;16(10):2920-30.

39 El-Shehaby AM,Zakaria A,El-Khatib M,et al.Association of fetuin-A and cardiac calcification and inflammation levels in hemodialysis patients〔J〕.Scand J Clin Lab Invest,2010;70(8):575-82.

40 Zebboudj AF,Imura M,Bostrom K.Matrix GLA protein,a regulatory protein for bone morphogenetic protein-2〔J〕.J Biol Chem,2002;277(6):4388-94.

41 Yao Y,Watson AD,Ji S,et al.Heat shock protein 70 enhances vascular bone morphogenetic protein-4 signaling by binding matrix Gla protein〔J〕.Circ Res,2009;105(6):575-84.

42 Hackeng TM,Rosing J,Spronk HM,et al.Total chemical synthesis of human matrix Gla protein〔J〕.Protein Sci,2001;10(4):864-70.

43 Steitz SA,Speer MY,Curinga G,et al.Smooth muscle cell phenotypic transition associated with calcification:upregulation of Cbfa1 and downregulation of smooth muscle lineage markers〔J〕.Circ Res,2001;89(12):1147-54.

44 Jono S,Ikari Y,Vermeer C,et al.Matrix Gla protein is associated with coronary artery calcification as assessed by electron-beam computed tomography〔J〕.Thromb Haemost,2004;91(4):790-4.

45 O'Donnell CJ,Shea MK,Price PA,et al.Matrix Gla protein is associated with risk factors for atherosclerosis but not with coronary artery calcification〔J〕.Arterioscler Thromb Vasc Biol,2006;26(12):2769-74.

46 Park HY,Kwon HM,Lim HJ,et al.Potential role of leptin in angiogenesis:leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro〔J〕.Exp Mol Med,2001;33(2):95-102.

47 Yamagishi SI,Edelstein D,Du XL,et al.Leptin induces mitochondrial superoxide production andmonocyte themoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A〔J〕.J Biol Chem,2001;276(27):25096-100.

48 Zeadin MG,Butcher MK,Shaughnessy SG,et al.Leptin promotes osteoblast differentiation and mineralization of primary cultures of vascular smooth muscle cells by inhibiting glycogen synthase kinase(GSK)-3β〔J〕.Biochem Biophys Res Commun,2012;425(4):924-30.

49 Zeadin M,Butcher M,Werstuck G,et al.Effect of leptin on vascular calcification in apolipoprotein E-deficient mice〔J〕.Arterioscler Thromb Vasc Biol,2009;29(12):2069-75.

50 Qasim A,Mehta NN,Tadesse MG,et al.Adipokines,insulin resistance,and coronary artery calcification〔J〕.J Am Coll Cardiol,2008;52(3):231-6.

51 Reilly MP,Iqbal N,Schutta M,et al.Plasma leptin levels are associated with coronary atherosclerosis in type 2 diabetes〔J〕.J Clin Endocrinol Metab,2004;89(8):3872-978.

52 Iribarren C,Husson G,Go AS,et al.Plasma leptin levels and coronary artery calcification in older adults〔J〕.J Clin Endocrinol Metab,2007;92(2):729-32.

53 Hamirani YS,Pandey S,Rivera JJ,et al.Markers of inflammation and coronary artery calcification:a systematic review〔J〕.Atherosclerosis,2008;201(1):1-7.

54 Jenny NS,Brown ER,Detrano R,et al.Associations of inflammatory markers with coronary artery calcification:results from the Multi-Ethnic Study of Atherosclerosis〔J〕.Atherosclerosis,2010;209(1):226-9.

55 Raaz-Schrauder D,Klinghammer L,Baum C,et al.Association of systemic inflammation markers with the presence and extent of coronary artery calcification〔J〕.Cytokine,2012;57(2):251-7.

56 Li JJ,Zhu CG,Yu B,et al.The role of inflammation in coronary artery calcification〔J〕.Ageing Res Rev,2007;6(4):263-70.

57 Cui RR,Li SJ,Liu LJ,Yi L,et al.MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo〔J〕.Cardiovasc Res,2012;96(2):320-9.

58 Goettsch C,Rauner M,Pacyna N,et al.miR-125b regulates calcification of vascular smooth muscle cells〔J〕.Am J Pathol,2011;179(4):1594-600.

59 Gui T,Zhou G,Sun Y,et al.MicroRNAs that target Ca(2+)transporters are involved in vascular smooth muscle cell calcification〔J〕.Lab Invest,2012;92(9):1250-9.

展开全文▼
展开全文▼

猜你喜欢

骨细胞斑块小鼠
破骨细胞能量代谢的研究进展
miR-373通过P2X7R影响抑郁症小鼠行为的作用机制
颈动脉的斑块逆转看“软硬”
一篇文章了解颈动脉斑块
萌小鼠,捍卫人类健康的“大英雄”
成骨细胞调节破骨细胞功能的机制及途径研究进展
microRNA-146a与冠心病患者斑块稳定性的相关性
小鼠大脑中的“冬眠开关”
今天不去幼儿园
有颈动脉斑块未必要吃降脂药