APP下载

单例先天性小耳残耳软骨细胞体外构建人耳廓软骨

2014-11-27曹谊林

基础医学与临床 2014年5期
关键词:耳廓酸盐胶原

康 宁,刘 霞,曹谊林,肖 苒

(中国医学科学院 整形外科医院 研究中心, 北京 100144)

研究论文

单例先天性小耳残耳软骨细胞体外构建人耳廓软骨

康 宁,刘 霞,曹谊林,肖 苒*

(中国医学科学院 整形外科医院 研究中心, 北京 100144)

目的探讨单例先天性小耳残耳软骨细胞体外构建正常人大小耳廓形态组织工程软骨的可行性。方法分离40例小耳畸形患者残耳软骨细胞统计细胞提取率;MTT法检测细胞增殖能力、计算扩增效率;免疫荧光和PCR检测不同代数细胞的软骨表型。分别应用3例患者各自的残耳软骨细胞培养至P3~P4代,藻酸盐凝胶包埋接种于正常人大小耳廓形态的聚羟基乙酸/聚乳酸支架,体外成软骨诱导动态培养10周后行组织学染色观察。结果耳软骨细胞提取率为(3.90±1.27)×106/g;在增殖培养基中细胞增殖能力明显提高,至P4代扩增(328.4±50.4)倍(Plt;0.05);P3代细胞Ⅱ型胶原、蛋白聚糖表达显著减弱,至P4代消失,Ⅰ型胶原表达增强;体外培养10周,实验组形成了耳廓形态的类软骨组织,可见典型软骨陷窝,番红O、甲苯胺蓝及Ⅱ型胶原染色阳性;对照组明显变形,未形成软骨结构。结论单例先天性小耳残耳软骨细胞经体外扩增和动态诱导培养可在体外构建正常人大小耳廓软骨。

先天性小耳畸形;残耳软骨细胞;耳廓形态软骨;组织工程

先天性小耳畸形是整形外科涉及软骨组织缺损的常见疾病,发病率约1.4/万。目前治疗多为自体肋软骨移植或假体植入,但造成供区损伤或存在外露、感染等风险。应用组织工程技术构建人耳廓软骨是组织工程向临床应用转化的重要研究方向之一。残耳软骨组织取材简便,不损伤正常生理结构,是一种极具应用价值的种子细胞来源。多项研究表明[1-3],应用残耳软骨细胞构建的组织工程软骨与生理软骨相比组织学水平未见明显差异,为采用残耳软骨细胞进行外耳廓重建提供了有力依据。本实验初步证实应用单例患者来源的残耳软骨细胞体外构建人耳廓软骨的可行性,以为未来的临床应用提供理论基础与技术参数。

1 材料与方法

1.1 样本来源

经本院伦理委员会同意,样本取自Ⅲ期耳廓再造术中废弃的残耳软骨,患者年龄7~25岁,共40例,均已知情同意。

1.2 主要试剂和因子

碱性成纤维细胞生长因子(basic fibroblast growth factor, b-FGF)(Peprotech公司),转化生长因子β1(transforming growth factor-β1, TGF-β1)(Peprotech公司),胰岛素铁硒传递蛋白(insulin-transferrin-selenium, ITS)(Sigma公司),维生素C,地塞米松,噻唑蓝[3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT, Sigma公司],兔抗人Ⅱ型胶原多克隆抗体、罗丹明-羊抗兔IgG(中杉金桥公司)。

1.3 残耳软骨细胞的分离培养和细胞提取率

将剥离软骨膜的残耳软骨称重记录。切成2 mm×2 mm×2 mm小块以0.25%胰蛋白酶消化20 min,0.2% Ⅳ型胶原酶37 ℃摇床消化8~12 h,200目滤网过滤,2 000r/min离心8 min,锥虫蓝染色检查细胞活力并计数,计算初始细胞提取率。以 1.5×104个/cm2的密度接种,分别以普通培养基(DMEM-LG, 10%胎牛血清, 100 U/mL青霉素,0.1 mg/mL链霉素)和增殖培养基(普通培养基加入10 ng/mL bFGF)培养,4 d传代1次。

1.4 细胞增殖能力检测

1.4.1 MTT比色法绘制生长曲线:取普通培养基培养的P1代及增殖培养基培养的P1~P4代残耳软骨细胞,按细胞1 000个/孔接种96孔板,加MTT溶液(5 g/L,pH 7.4)37 ℃4 h后以DMSO溶解结晶,490 nm波长处测定吸光度值。

1.4.2 细胞增殖倍数计算:在普通和增殖培养基培养下,分别于原代接种及第4代末行细胞计数。细胞增殖倍数:P=M最终/ M初始。

1.5 软骨细胞表型检测

取增殖培养基培养的原代、P3、P4代残耳软骨细胞,分别进行番红O、Ⅱ型胶原免疫荧光染色,及Ⅱ型胶原(Type Ⅱ collagen, COLⅡ)、蛋白聚糖(Aggrecan, ACAN)、Ⅰ型胶原 (Type Ⅰ collagen, COL Ⅰ)PCR检测,引物如下:18S F:5′-TGAGAAA CGGCTACCACATC-3′,R:5′-TCCCAAGATCCAACT ACGAG-3′;COL Ⅱ F:5′-AGGTCACAGAGGTTATCC AG-3′,R:5′-GTCCGTCCTCTTTCACCAG-3′;ACAN F:5′-CGGCGAAGCAGTACACATC-3′,R:5′-TGGTGT GAGGACGTATGGC-3′;COL Ⅰ F:5′-TGGGATGGAG GGAGTTTAC-3′,R:5′-ATGGCTGCACGAGTCACAC-3′。

1.6 耳廓形态支架的制备

依据成人外耳廓CT扫描数据,应用快速成型技术制作外耳廓阳模(图1A, B, D),倒制硅胶阴模(图1C)。取400 mg无纺聚羟基乙酸(Polyglycolic acid, PGA)(组织工程国家工程研究中心)均匀嵌入阴模,以阳模压制,滴加0.5%聚乳酸(Polylactic acid, PLA)(Sigma公司)二氯甲烷溶液塑型成宽3 cm,长5.5 cm的耳廓支架(图1E)。

1.7 旋转式培养装置的制备

在250 mL离心瓶侧壁嫁接15 mL离心管,接口密封,固定于垂直旋转搅拌仪侧翼,调转速为6r/min(图1H)。

1.8 细胞-材料复合物的体外培养及组织学检测

将0414、0.692和 0.785 g 3例小耳患者的残耳软骨细胞分别扩增至P4、P3、P3代,以细胞浓度80×106个/mL重悬于1.2%藻酸盐溶液,各自接种支架后浸入102 mmol/L的CaCl2溶液,37 ℃放置3 min,凝胶形成后(图1F)放入旋转培养装置,加诱导培养基(含10% 胎牛血清,10 ng/mL TGF-β1,0.22 μmol/L维生素C,10-8mol/L地塞米松,1×ITS,100 U/mL青霉素,0.1 mg/mL链霉素)动态培养,设为实验组。其余1例0.925 g残耳来源细胞扩增至P3代,不使用藻酸盐凝胶重悬(图1G),直接以普通培养基培养作对照,体外培养10周后取材行HE、番红O、甲苯胺蓝和Ⅱ型胶原免疫组化染色。

1.9 扫描电镜检测

将实验组、对照组体外培养24 h的复合物以2.5%戊二醛固定、乙醇梯度脱水、冷冻干燥后行扫描电镜检测。

1.10 统计学分析

2 结果

2.1 残耳软骨细胞提取率

40例残耳软骨组织重1~1.5 g不等,细胞提取率为(3.90±1.27)×106/g。

2.2 残耳软骨细胞的增殖能力和增殖倍数

增殖培养基中P1~P4代细胞增殖能力无明显差别,第5天后显著高于普通培养基培养的P1代细胞(Plt;0.05)(图2A);残耳软骨细胞在普通培养基中传至P4代可扩增(107.36±18.32)倍,增殖培养基中显著增至(328.4±50.4)倍(Plt;0.05)(图2B)。

A, B.data model of human ear shape obtained by computer assistont design; C.silicon negative model; D.resin positive model; E.adult human ear-sized and shaped PGA/PLA scaffold; F.polymerization of cell-scaffold complex embedded in alginate gel; G.complex without alginate gel set as control; H.modified rotating culture devicep

图1细胞材料复合物的体外培养
Fig1Invitrocultureofcell-scaffoldcomplex

2.3 软骨细胞表型的变化

P0代残耳软骨细胞呈多角形,番红O、Ⅱ型胶原免疫荧光染色均为强阳性(图3A),至P3代细胞呈长梭形,阳性着色明显减弱(图3B),至P4代基本消失(图3C)。COL Ⅱ、ACAN的mRNA表达情况与细胞水平一致,COL Ⅰ表达随传代逐渐增强(图3D)。

2.4 扫描电镜检测结果

藻酸盐凝胶包埋的残耳软骨细胞呈球状,悬浮在支架当中(图4A, B);对照组细胞外形长而扁平,黏附在支架上(图4C, D)。

2.5 复合物体外培养10周检测结果

实验组复合物形成耳廓形态的类软骨组织(图5A, B),触之有弹性,HE染色见软骨陷窝,有少量未降解的藻酸盐凝胶(图5C),番红O、甲苯胺蓝与Ⅱ型胶原染色均呈阳性(图5C1~4)。对照组复合物变形,新生组织薄弱(图5D),HE染色示体外4周细胞系长且不规则,无陷窝结构,PGA尚未降解,体外10周时有部分坏死细胞(图5E)。

3 讨论

先天性小耳患者残耳软骨是构建组织工程耳廓软骨重要的种子细胞来源。但残耳软骨大小不一,提取的细胞量不定,若以构建正常人大小耳廓软骨为目的,残耳软骨细胞需经历大量体外扩增。因此,明确残耳软骨细胞提取率、 增殖效率及其表型随传代的变化情况,是应用自体残耳软骨细胞进行临床个体化耳廓再造的重要基础。

A.growth curve of P1-P4 cells with or without b-FGF during 10 days; B.amplification folds of cells expanded until P4 with or without b-FGF;*Plt;0.05 between chondrocytes cultured with b-FGF and without b-FGF;#Plt;0.05 between P1 with b-FGF and other groups

图2残耳软骨细胞的增殖能力
Fig2Proliferationofhumanremnantearchondrocytes

A.safranin O and Col Ⅱ staining of P0 chondrocytes; B.safranin O and Col Ⅱ staining of P3 chondrocytes; C.safranin O and Col Ⅱ staining of P4 chondrocytes; D.gene expressions of COLⅡ, ACAN, and COLI in P0, P3, and P4 chondrocytes

图3软骨细胞表型随代数的变化
Fig3Chondrocyticphenotypealteringofremnantearchondrocyteswithpassages(×200)

A, B.SEM of experimental group after seeding 24 hrs; C, D.SEM of control group without alginate gel after seeding 24 hrs图4 扫描电镜观察细胞材料复合物Fig 4 SEM pictures of cell-scaffold complex (A, C:×2 000; B, D:×5 000)

A.gross view of neo-tissue in experimental group; B.gross view of neo-tissue in experimental group from up and down; C.HE staining; C1~4.amplifications of HE staining, safranin O staining, toludine Blue staining, and immunohistochemical staining of Col Ⅱ; D.gross view of neo-tissue in control group; E.HE staining at 4 weeks (black arrow: undegraded PGA fibers) and 10 weeksinvitro

图5体外培养10周大体观及组织学
Fig5Grossviewandhistologyofneo-tissuesconstructed10weeksinvitro(C:×100;C1~4:×400;E:×200)

本实验从大量残耳样本中首次明确了残耳软骨组织的初始细胞提取率。bFGF可刺激间充质干细胞与软骨细胞的增殖和成熟[4],本实验证实应用bFGF可在短期内获得充足的软骨细胞量,同时证实细胞扩增至P3代COL Ⅱ和ACAN表达已明显减弱,COL Ⅰ表达持续增强,说明软骨细胞已发生去分化。因此, 按取1 g残耳软骨计算,细胞扩增到P3或P4代虽可满足构建正常人大小耳廓软骨的细胞量,但需进行表型诱导再分化才能形成软骨组织。文献表明3D培养可诱导软骨表型再分化[5-7]。电镜结果证实藻酸盐凝胶包埋的软骨细胞呈球形,而球形结构利于软骨表型的稳定[8],此外藻酸盐凝胶也有助于维持构建物的特定形态[9]。旋转培养装置可使构建物在持续动态旋转的环境中生长,不仅利于软骨表型再分化,更便于营养物质渗透及代谢交换[10]。

探索耳廓软骨的体外构建是软骨组织工程产业化发展的必然需求。构建复杂形态、大体积的软骨组织对细胞接种和营养渗透提出了更高要求。本实验结果证实应用单例小耳畸形患者来源的残耳软骨细胞,综合藻酸盐凝胶、生长因子及旋转培养条件进行再分化诱导,可在体外构建正常人大小耳廓形态的类软骨组织。下一步尚需体内实验进一步证实其稳定性。

[1] Kamil SH, Vacanti MP, Vacanti CA,etal. Microtia chondrocytes as a donor source for tissue-engineered cartilage[J]. Laryngoscope, 2004, 114: 2187-2190.

[2] 张洁, 蒋海越, 何乐仁, 等. 残耳软骨细胞与脂肪干细胞共培养体内构建软骨的实验研究[J].组织工程与重建外科杂志,2011,7:75-79.

[3] Yanaga H, Imai K, Fujimoto T,etal. Generating ears from cultured autologous auricular chondrocytes by using two-stage implantation in treatment of microtia[J]. Plast Reconstr Surg, 2009, 124: 817-825.

[4] Brandl A, Angele P, Roll C,etal. Influence of the growth factors PDGF-BB, TGF-beta1 and bFGF on the replicative aging of human articular chondrocytes duringinvitroexpansion[J]. J Orthop Res, 2010, 28: 354-360.

[5] Ando K, Imai S, Isoya E,etal. Effect of dynamic compressive loading and its combination with a growth factor on the chondrocytic phenotype of 3-dimensional scaffold-embedded chondrocytes[J]. Acta Orthop, 2009, 80:724-733.

[6] Caron MM, Emans PJ, Coolsen MM,etal. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures[J]. Osteoarthritis Cartilage, 2012, 20:1170-1178.

[7] Schuh E, Hofmann S, Stok K,etal. Chondrocyte redifferentiation in 3D: the effect of adhesion site density and substrate elasticity[J]. J Biomed Mater Res A, 2012, 100:38-47.

[8] Jin X, Sun Y, Zhang K,etal. Ectopic neocartilage formation from predifferentiated human adipose derived stem cells induced by adenoviral-mediated transfer of hTGF beta2[J]. Biomaterials, 2007, 28: 2994-3003.

[9] Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials[J]. Macromol Biosci, 2006, 6: 623-633.

[10] Vunjak-Novakovic G, Obradovic B, Martin I,etal. Bioreactor studies of native and tissue engineered cartilage[J]. Biorheology, 2002, 39: 259-268.

Generation of full-sized and ear-shaped cartilagewith passaged remnant ear chondrocytes from microtia individual

KANG Ning, LIU Xia, CAO Yi-lin, XIAO Ran*

(Research Center of Plastic Surgery Hospital, CAMS amp; PUMC, Beijing 100144, China)

ObjectiveTo test the feasibility ofinvitrogeneration of a full-sized and ear-shaped cartilage with remnant ear chondrocytes derived from individual microtia patient.MethodsThe initial cell yield of remnant ear chondrocytes was analyzed from 40 cases of microtia. Proliferation was tested by MTS and expansion efficiency was calculated. The chondrocytic phenotype altering after continuous passages was characterized by immunofluorence staining and PCR. P3~P4chondrocytes were seeded onto the PGA/PLA scaffold with the shape and full size of adult human ear. The complex was cultured with a redifferentiation system composed of chondrogenic factors, alginate gel, and a rotating culture device.ResultsThe initial cell yield from remnant ear tissue was(3.90±1.27)×106/g. The proliferative ability of remnant ear chondrocytes from P1~P4passages was enhanced by adding bFGF, and the amplification of the cells expanded to P4could reach around(328.4±50.4)folds. However, the COLⅡ and ACAN expressions gradually declined with passages and became negative in P4 chondrocytes whereas COLI expression showed stronger. The neo-cartilage in the experimental group maintained the ear shape well and

formed cartilaginous structure with positive staining of Safranin O, Toludine Blue, and COL Ⅱ, while the control group failed to form cartilage tissue and only showed fibrous structure.ConclusionsA full-sized and ear-shaped cartilage can be engineeredinvitroby the passaged remnant ear chondrocytes derived from individual microtia under a redifferentiation culture system.

microtia; remnant ear chondrocyte; ear-shaped cartilage; tissue engineering

2013-09-26

2013-11-01

国家自然科学基金(31300801);北京市科技计划项目(D090800046609003)

*通信作者(correspondingauthor): xiaoran@pumc.edu.com

1001-6325(2014)05-0583-06

R 318

A

猜你喜欢

耳廓酸盐胶原
双膦酸盐在骨相关疾病诊断和治疗中的研究进展
搓耳
——护肾
浅谈耳廓缺损的法医学鉴定
胶原无纺布在止血方面的应用
高铁酸盐的制备、性质及在水处理中的应用
红蓝光联合胶原贴治疗面部寻常痤疮疗效观察
磷钼钒杂多酸盐MxHyP2Mo15V3O62的合成及其催化性能研究
Keggin结构杂多酸盐的合成、表征及催化燃油超深度脱硫
胶原ACE抑制肽研究进展
正畸矫治过程中龈沟液Ⅰ型胶原交联羧基末端肽的改变