利用pHsh载体克隆与表达双活性阿拉伯/木糖苷酶
2014-10-28彭静静
摘要:将来源于嗜热厌氧乙醇菌(Thermoanaerobacter ethanolicus JW200)的双活性阿拉伯/木糖苷酶(XarB)构建到新型热激质粒pHsh上,得到重组质粒。将重组质粒pHsh-xarB转入大肠杆菌(Escherichia coli JM109)。SDS-PAGE结果表明,该重组酶的分子量为86 kDa,与理论值相符。基于热激载体pHsh的重组表达系统具有诱导表达简便、诱导方式廉价的优点,且重组酶热稳定性好。
关键词:阿拉伯/木糖苷酶;pHsh;克隆;表达
中图分类号:Q814 文献标识码:A 文章编号:0439-8114(2014)15-3662-03
Cloning and Expression of a Arabinosidase-xylosidase from Thermoanaerobacter ethanolicus JW200 Using pHsh Vector
PENG Jing-jing
(College of Biology and Enology, Taishan University, Taian 271021, Shandong, China)
Abstract: The structure gene from Thermoanaerobacter ethanolicus JW200 encoding XarB gene was amplified and ligated into pHsh vector, resulting in pHsh-xarB. XarB gene was obtained after expressing pHsh-xarB in Escherichia coli JM109. Results of SDS-PAGE showed that the molecular weight of the recombinant XarB expressed was about 86 kDa, the same as the size predicted. The expression vector system of the heat shock plasmid pHsh had high expression level and cheap induction.
Key words: Arabinosidase-xylosidase;pHsh;cloning;expression
收稿日期:2014-03-15
基金项目:泰安市科技发展计划项目(20132094);泰山学院博士科研启动金项目(Y-01-2013001)
作者介绍:彭静静(1983-),女,山东泰安人,讲师,博士,主要从事微生物基因工程和代谢工程的研究,(电话)15153887527(电子信箱)
zjingjing1983@163.com。
据统计,我国每年秸秆产量达6亿t左右,由于目前缺乏合理的应用,大部分秸秆用于燃烧或者被废弃[1]。秸杆中半纤维素的含量占总干重的25%~50%,其化学结构较纤维素复杂,是一条以β-1,4-糖苷键相联的木聚糖主链,上面带有α-1,3-阿拉伯糖或α-1,2-葡萄糖醛酸构成的侧枝,被称为阿拉伯葡萄糖醛酸木聚糖。这种木聚糖彻底降解的产物主要是木糖和少量阿拉伯糖、葡萄糖醛酸,可以用作基本碳源生产各种发酵产品,包括有机酸、氨基酸、糖醇、工业酶类溶剂或燃剂。由于木聚糖结构及降解方式的复杂性,彻底降解木聚糖需要多种水解酶(主链水解酶β-1,4内切木聚糖酶、β-木糖苷酶和侧链水解酶α-L-阿拉伯呋喃糖苷酶、α-葡萄糖醛酸酶和乙酰木聚糖酯酶等)的协同作用。
研究发现来自嗜热厌氧乙醇菌(Thermoanaerobacter ethanolicus,JW200)的阿拉伯/木糖苷酶,以人工底物测试,其木糖苷酶活性和阿拉伯糖苷酶活性分别为每毫克蛋白质180和1 000 U,高于其他木糖苷酶或阿拉伯糖苷酶的活性[2]。嗜热梭菌产生的半纤维素酶的耐热性好,但由于嗜热厌氧乙醇菌是一种严格的厌氧菌,该菌的培养条件苛刻,且菌株产酶量相对较低,不适合工业大规模发酵生产。而采用分子生物学手段,将嗜热酶基因导入大肠杆菌中高效表达,是一种有效的方法[3-5]。本试验克隆了嗜热厌氧乙醇菌的双活性阿拉伯/木糖苷酶(XarB)基因,并连接到新型热激表达载体pHsh上,得到重组质粒pHsh-xarB,并实现了双功能半纤维素酶在大肠杆菌(Escherichia coli JM109)中的高效表达,构建出高酶活、耐热和低产酶条件的纤维素酶基因工程菌,为该酶在工业上的开发及利用提供参考。
1 材料与方法
1.1 材料
嗜热厌氧乙醇菌编号ATCC31550,由美国佐治亚大学微生物系Wiegel教授分离并惠赠。采用厌氧培养基培养,69 ℃静置培养8 h[6,7]。E. coli JM109购自Promega公司。采用Luria-Bertani(LB)培养基:胰蛋白胨10 g/L,酵母膏5 g/L,NaCl 10 g/L。固体培养基添加终浓度为2%的琼脂粉。
1.2 方法
1.2.1 基因组提取 嗜热厌氧乙醇菌(JW200)基因组的提取与DNA操作采用分子克隆技术标准方法进行。质粒转化采用电转化方法进行,质粒和PCR产物采用Qiagen plasmid kit 和PCR purification kit(Qiagen USA)纯化。
1.2.2 XarB基因的克隆 根据Genebank中嗜热厌氧乙醇菌(JW200)双活性阿拉伯/木糖苷酶(XarB) 的基因序列(GenBank 登录号AF135015)设计引物xarB-N(5-GCAAGCCATTATATTTAGATTC-3)和xarB-C(5-CCCCTCGAGCTATTTATTCTCTACCCTTAC-3),下划线为XhoⅠ酶切位点;以提取的嗜热厌氧乙醇菌(JW200)的基因组为模板,为提高扩增片段的保真性,用Pyrobest DNA聚合酶对模板进行扩增。反应体系(50 μL):10×Buffer 5 μL、dNTP(各2.5 mmol/L)4 μL、xarB-N(50 μmol/L)1 μL、xarB-C(50 μmol/L)1 μL、模板(10 μg/mL)1 μL、Probest DNA 聚合酶(1.25 U/μL)1 μL、H2O 37 μL。PCR 扩增参数:95 ℃ 变性5 min,加Pyrobest DNA 聚合酶 1 μL;然后94 ℃ 变性30 s,60 ℃退火30 s,72 ℃延伸150 s,30次循环;72 ℃保温10 min。endprint
PCR产物验证正确后过柱纯化,并用XhoⅠ进行单酶切,并与XhoⅠ和平端酶StuⅠ双酶切的质粒pHsh 16 ℃下连接6~12 h,将连接液电击转化至E. coli JM109中,挑取阳性克隆,提取并验证质粒,所得质粒命名为pHsh-xarB,双酶切验证正确的质粒送上海美吉生物技术公司测序。
1.2.3 重组蛋白质的表达与纯化 重组质粒pHsh-xarB电转化到宿主细胞E. coli JM109中,挑取重组单菌落接种于含100 g/mL氨苄青霉素的LB培养液中,30 ℃振荡培养至OD600达到0.6~0.8时转入 42 ℃水,浴摇床中进行热激表达,继续培养8 h后离心收集菌体。用50 mmol/L pH为7.5的Tris-HCl缓冲液洗涤细胞2次,并用相同缓冲液重悬细胞,置于冰水浴中用超声波破碎仪破碎细胞,细胞碎片于12 000 r/min离心10 min,去除上清液即为粗酶液。将粗酶液在60 ℃热处理30 min后,4 ℃ 12 000 r/min离心30 min去除变性蛋白质。
2 结果与分析
2.1 嗜热厌氧乙醇菌(JW200)基因组的提取
按照厌氧培养基配方接种嗜热厌氧乙醇菌(JW200)于厌氧管中,69 ℃静置培养8 h后提取其DNA,经过琼脂糖电泳验证,结果如图1所示。由图1可知,试验得到的电泳条带清晰,表明提取的嗜热厌氧乙醇菌(JW200)基因组可以用于后续试验。
2.2 XarB基因的克隆
根据Genebank中嗜热厌氧乙醇菌(JW200)双活性阿拉伯/木糖苷酶(XarB)的基因序列(GenBank登录号AF135015)为2 300 bp,利用Pyrobest DNA聚合酶扩增得到的DNA片段经过琼脂糖电泳验证,结果如图2所示,PCR扩增出来的DNA片段与实际大小(2 300 bp)相符。
2.3 重组质粒pHsh-xarB的构建
扩增得到的DNA片段经Xho I单酶切后纯化,与载体pHsh分别经过Stu I和Xho I双酶切和连接,得到重组质粒pHsh-xarB。阳性转化子抽提取质粒,采用Xho I单酶切表达质粒pHsh-xarB后释放出4 700 bp左右的条带,正好是载体pHsh(2 400 bp)与XarB基因(2 300 bp)之和,酶切结果见图3。测序结果显示,该基因已插入到载体的正确位置。
2.4 重组双活性阿拉伯/木糖苷酶的表达及检测
将重组质粒pHsh-xarB电转化到宿主细胞E. coli JM109中,挑取重组单菌落接种于含100 g/mL 氨苄青霉素的LB培养液中培养,最终收集菌体,以pHsh转化产物为对照,SDS-PAGE分析结果(图4)表明,重组菌均能产生约86 kDa的特异条带,与预期的蛋白质相对分子量大小一致。
3 讨论
由于木聚糖是高度分支的多糖,其主链和侧链含有不同的侧枝,主要有乙酰基、阿拉伯糖基和葡萄糖醛酸基等;当内切木聚糖酶随机作用木聚糖时,会受到这些基团的空间阻碍,而不能到达所作用的木糖苷键,所形成的产物只能是带侧枝的低聚糖。因此,木聚糖的完全降解需要多种水解酶的协同作用。同时,使用多种自然克隆到的特异水解某一多糖结构的水解酶来降解木聚糖,虽然清洁高效,但工序复杂,成本高。在不改变酶自身优良性质的条件下,如果将有关的水解酶融合串联成一个具有多种水解酶活性的多功能酶,或通过融合标签回收重复利用酶,来达到提高融合酶综合效率的目的[8-10],这将大大简化工序和降低成本。因此,下一步的研究将降解木聚糖需要的多种水解酶进行基因融合,力求使用基因工程和蛋白质工程的手段得到多功能、高效率、耐高温、降解木聚糖的融合酶。
构建合适的嗜热菌外源基因表达系统,高效率地表达一些耐热酶一直是人们研究地热点。pHsh作为一种新型表达载体,通过热激就可以高效表达外源基因,相比较传统的化学诱导剂如IPTG价格昂贵,而热激诱导能有效减少基因诱导表达时的成本,在工业化应用中具有巨大的优越性和现实意义[11,12]。本研究采用pHsh系统成功表达了来源于嗜热厌氧乙醇菌JW200的双活性阿拉伯/木糖苷酶(XarB),由于该酶的编码基因含有较多的稀有密码子,因此,作者计划将其基因的稀有密码子进行定点突变成大肠杆菌的优势密码子,通过对表达质粒的TIR区域进行mRNA二级结构分析后,优化mRNA二级结构,以进一步提高其表达水平。
参考文献:
[1] BASTAWDE K B. Xylan structure, microbial xylanase, and their mode of action[J]. World J microbiol Biotechnol,1992,8:353-368.
[2] YIN E K, LE Y L, PEI J J, et al. High-level expression of the xylanase from Thermomyces lanuginosus in Escherichia coli [J]. World J Microbiol Biotechnol, 2008,24(2):275-280.
[3] XUE YM, LU C, MAO Z G, et al. Cloning and expression of arabinofuranosi-dase/xylosidase gene of Thermoanaerobacter ethanolicus in Escherichia coli and stability of expression products[J]. J China Agri Univ, 2003,8(5):9-13.
[4] LI W, ZHANG W W, YANG M M, et al. Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli[J]. Molecular Biotechnology, 2008, 40(2):195-201.endprint
[5] BANEYX F. Recombinant protein expression in Escherichia coli[J]. Curr Opin Biotechnol, 1999, 10(5): 411-421.
[6] JIANG Y, ZHOU Q, WU K, et al. A highly efficient method for liquid and solid cultivation of the anaerobic hyperthermophilic eubacterium Thermotoga maritima[J]. FEMS Microbiol Lett, 2006, 259(2): 254-259.
[7] MACY J M, SNELLEN J E, HUNGATE R E. Use of syringe methods for anaerobiosis[J]. J Clin Nutr,1972,25:1318-1323.
[8] LEVASSEUR A, NAVARRO D, PUNT P J, et al. Construction of engineered bifunctional enzymes and their overproduction in Aspergillus niger for improved enzymatic tools to degrade agricultural by-products[J]. Appl Environ Microbiol,2005, 71: 8132-8140.
[9] JIN M A, YOUNG K K,WOO J L, et al. Evaluation of a novel bifunctional xylanase-cellulose constructed by gene fusion[J]. Enzyme Microb Technol, 2005, 36(7):989-995.
[10] LU P, FENG M G, LI W F, et al. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli[J]. FEMS Microbiol Lett, 2006, 261(2): 224-230.
[11] WU H W, PEI J J, JIANG Y, et al. pHsh vectors, a novel expression system of Escherichia coli for the large-scale production of recombinant enzymes[J]. Biotechnology Letters,2010, 32(6): 795-801.
[12] WU H W, PEI J J, WU G G, et al. Overexpression of GH10 endoxylanase XynB from T. maritima in E. coli by a novel vector with potential for industrial application[J]. Enzyme Microb Technol, 2008, 42(3): 230-234.endprint
[5] BANEYX F. Recombinant protein expression in Escherichia coli[J]. Curr Opin Biotechnol, 1999, 10(5): 411-421.
[6] JIANG Y, ZHOU Q, WU K, et al. A highly efficient method for liquid and solid cultivation of the anaerobic hyperthermophilic eubacterium Thermotoga maritima[J]. FEMS Microbiol Lett, 2006, 259(2): 254-259.
[7] MACY J M, SNELLEN J E, HUNGATE R E. Use of syringe methods for anaerobiosis[J]. J Clin Nutr,1972,25:1318-1323.
[8] LEVASSEUR A, NAVARRO D, PUNT P J, et al. Construction of engineered bifunctional enzymes and their overproduction in Aspergillus niger for improved enzymatic tools to degrade agricultural by-products[J]. Appl Environ Microbiol,2005, 71: 8132-8140.
[9] JIN M A, YOUNG K K,WOO J L, et al. Evaluation of a novel bifunctional xylanase-cellulose constructed by gene fusion[J]. Enzyme Microb Technol, 2005, 36(7):989-995.
[10] LU P, FENG M G, LI W F, et al. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli[J]. FEMS Microbiol Lett, 2006, 261(2): 224-230.
[11] WU H W, PEI J J, JIANG Y, et al. pHsh vectors, a novel expression system of Escherichia coli for the large-scale production of recombinant enzymes[J]. Biotechnology Letters,2010, 32(6): 795-801.
[12] WU H W, PEI J J, WU G G, et al. Overexpression of GH10 endoxylanase XynB from T. maritima in E. coli by a novel vector with potential for industrial application[J]. Enzyme Microb Technol, 2008, 42(3): 230-234.endprint
[5] BANEYX F. Recombinant protein expression in Escherichia coli[J]. Curr Opin Biotechnol, 1999, 10(5): 411-421.
[6] JIANG Y, ZHOU Q, WU K, et al. A highly efficient method for liquid and solid cultivation of the anaerobic hyperthermophilic eubacterium Thermotoga maritima[J]. FEMS Microbiol Lett, 2006, 259(2): 254-259.
[7] MACY J M, SNELLEN J E, HUNGATE R E. Use of syringe methods for anaerobiosis[J]. J Clin Nutr,1972,25:1318-1323.
[8] LEVASSEUR A, NAVARRO D, PUNT P J, et al. Construction of engineered bifunctional enzymes and their overproduction in Aspergillus niger for improved enzymatic tools to degrade agricultural by-products[J]. Appl Environ Microbiol,2005, 71: 8132-8140.
[9] JIN M A, YOUNG K K,WOO J L, et al. Evaluation of a novel bifunctional xylanase-cellulose constructed by gene fusion[J]. Enzyme Microb Technol, 2005, 36(7):989-995.
[10] LU P, FENG M G, LI W F, et al. Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced β-glucanase and xylanase expressed in Escherichia coli[J]. FEMS Microbiol Lett, 2006, 261(2): 224-230.
[11] WU H W, PEI J J, JIANG Y, et al. pHsh vectors, a novel expression system of Escherichia coli for the large-scale production of recombinant enzymes[J]. Biotechnology Letters,2010, 32(6): 795-801.
[12] WU H W, PEI J J, WU G G, et al. Overexpression of GH10 endoxylanase XynB from T. maritima in E. coli by a novel vector with potential for industrial application[J]. Enzyme Microb Technol, 2008, 42(3): 230-234.endprint