APP下载

microRNA对人视网膜母细胞瘤肿瘤干细胞多药耐药性的影响

2014-10-28曹娟白淑玮

中国医药导报 2014年27期

曹娟 白淑玮

[摘要] 目的 通过对人视网膜母细胞瘤(RB)肿瘤干细胞(CSCs)多药耐药性的研究,探讨microRNA对肿瘤干细胞多药耐药性的影响。 方法 通过流式细胞仪分选Y79细胞中的ABCG2(+)与ABCG2(-)细胞,作为ABCG2(+)组与ABCG2(-)组;采用MTT比色实验比较ABCG2(+)组与ABCG2(-)组对抗肿瘤药物长春新碱、依托泊苷和卡铂的敏感性,得到候选microRNA。从标本库中选择RB组织切片,行LNA-原位杂交,并根据耐药性分为高耐药性组与低耐药性组,通过Real time PCR观察候选microRNA在两组中表达差异。 结果 ①分选阳性率:ABCG2(+)分选后(91.7%)显著高于分选前(5.7%),差异有统计学意义(P < 0.05)。②两组耐药性比较:从各个浓度水平上比较,ABCG2(+)细胞的耐药性明显高于ABCG2(-)细胞,差异有统计学意义(P < 0.05)。③分选细胞的凋亡率和细胞内药物蓄积比较:ABCG2(+)组的凋亡率明显低于ABCG2(-)组,差异有统计学意义(P < 0.05);ABCG2(+)组的药物蓄积明显低于ABCG2(-)组,差异有统计学意义(P < 0.05)。④候选microRNA在不同耐药性RB切片中的表达:高耐药组的microRNA表达率(39.3%)明显高于低耐药组的microRNA表达率低(5.2%),差异有统计学意义(P < 0.05)。 结论 ABCG2(+)是Y79细胞系中的耐药细胞群,microRNA与肿瘤干细胞的侵袭性和耐药性密切相关,调控microRNA可以抑制肿瘤干细胞的耐药性,提高其对化疗的敏感性。

[关键词] microRNA;视网膜母细胞;肿瘤干细胞;多药耐药;ABCG2(+)/ABCG2(-)

[中图分类号] R739.7 [文献标识码] A [文章编号] 1673-7210(2014)09(c)-0004-06

Influence of microRNA on multi-drug resistance of cancer stem cell in human retinoblastoma

CAO Juan BAI Shuwei

Department of Ophthalmology, the Fourth Hospital of Xi'an City, Shaanxi Province, Xi'an 710004, China

[Abstract] Objective To discuss the influence of MicroRNA on multi-drug resistance of cancer stem cell through human retinoblastoma (RB) cancer stem cells (CSCs) multi-drug resistance research. Methods ABCG2 (+) and ABCG2 (-) cells from Y79 cells were sorted by flow cytometry, as the ABCG2 (+)group and the ABCG2 (-) group; the sensitivity of ABCG2 (+) and the ABCG2 (-) cells for vincristine, etoposide and carboplatin were compared by MTT colorimetric experiment, and then candidate microRNA was gotten. RB tissue biopsies were chosen from specimens library, then were given LNA-situ hybridization, and divided into high resistance group and low resistance group according to the resistance, microRNA expression differences in the two groups were observed by real-time PCR. Results ①Separating positive rate of ABCG2 (+) after separation (91.7%) was significantly higher than that before the separation (5.7%), the difference was statistically significant (P < 0.05). ②Resistance comparison, ABCG2 resistance of ABCG2 (+) cells was obviously higher than that of ABCG2 (-) cells on various levels, the difference was statistically significant (P < 0.05). ③The sorting cell apoptosis rate and intracellular drug accumulation comparison, apoptosis rate of ABCG2 (+)group was obviously lower than the ABCG2 (-) group, the difference was statistically significant (P < 0.05); the drug accumulation of ABCG2 (+) group was significantly lower than the ABCG2 (-) group, the difference was statistically significant (P < 0.05). ④the expression of candidate microRNA in different resistance RB section, microRNA expression rate of high resistance group (39.3%) was significantly higher than low resistance group (5.2%), the difference was statistically significant (P < 0.05). Conclusion The ABCG2 (+) is the drug-resistant cell line of Y79 cells, microRNA is closely related to the tumor stem cell invasive and resistance, the microRNA regulating can inhibit the drug resistance of cancer stem cells, improve its sensitivity to chemotherapy.

[Key words] microRNA; Retinal mother cells; Cancer stem cells; Multi-drug resistant; ABCG2 (+)/ABCG2 (-)

视网膜母细胞瘤(retinoblastoma,RB)是儿童最常见的原发性眼内恶性肿瘤。调查显示5岁以下儿童RB发病率高达11.8/100万,占同龄儿童恶性肿瘤的6.1%[1]。在我国台湾,RB的5年生存率为81%,其中双眼RB 5年生存率仅64.3%[2]。流行病学研究中发现,我国RB诊断滞后,化学减容治疗效果不佳,很多患者最终不得不接受眼球摘除术来控制肿瘤的发展,这主要是由于部分RB表达多种耐药相关蛋白如P-糖蛋白(P-glycoprotein,P-gp),多药耐药相关蛋白(multi-drug related protein, MRP)、肺耐药蛋白(lung resistance associated protein,LRP)等,因而对化疗不敏感[3]。恶性肿瘤对化疗的多药耐药性是大多数恶性肿瘤化疗效果不佳最主要的原因。现在越来越多的证据表明,microRNA不但广泛参与各种肿瘤的发生发展与复发转移,而且与肿瘤耐药性的产生有关。这些研究都指出:microRNA与肿瘤干细胞的侵袭性和耐药性密切相关,调控microRNA可以抑制肿瘤干细胞的耐药性,提高其对化疗的敏感性[4-6]。为探究MicroRNA调控人RB肿瘤干细胞多药耐药性的机制,本研究组做了相关研究,现报道如下:

1 材料与方法

1.1 材料与试剂

Y79细胞(由西安交通大学医学院眼科实验室提供),含10%胎牛血清1640培养基、无血清化学限定培养基、10%FBS:1640培养基、抗-ABCG2抗体、IgG2a抗体、山羊抗鼠FITC二抗、MTT试剂盒、Signosis northern blot试剂盒、荧光素酶测试试剂Ⅱ。

实验用抗肿瘤药物为长春新碱、依托泊苷和卡铂。长春新碱浓度梯度为0.1、1.0、10 μg/mL,依托泊苷浓度梯度为0、50、100 μmol/L,卡铂浓度梯度为0、50、150 μmol/L。长春新碱、依托泊苷和卡铂的血浆峰浓度(PPC)分别为5.0、2.0、1.0 μg/mL。

1.2 实验方法

1.2.1 Y79细胞的分选及培养(流式细胞术)

用含10%胎牛血清1640培养基培养,扩增Y79细胞至8×107个,打碎后重悬至浓度1×107个/mL,无菌条件下与抗-ABCG2抗体于4℃孵育20 min,采用IgG2a抗体作为同型对照。PBS洗涤细胞,加入5 μL山羊抗鼠FITC二抗,4℃,20 min,3~5次洗涤后上流式细胞仪进行分选。分选后实验组ABCG2(+)细胞用无血清化学限定培养基培养,对照组ABCG2(-)细胞用10%FBS:1640培养基培养,2~3 d换液1次,定期传代。流式细胞法,检测分选后的ABCG2细胞表达率。

1.2.2 化疗药物敏感度实验(real-time PCR检测、MTT比色、引物序列及免疫荧光)

首先委托ABI公设计合成具有茎环(stem loop)结构的反转录引物和用miRNA荧光标记的特异分子探针。用Trizol抽提总RNA,将抽提的RNA进行反转录的cDNAz作为real-time PCR检测的模板,加入引物及探针(表1),调整好总体积后加入96孔板,设3个重复板。将分选出的ABCG2(+)与ABCG2(-)细胞稀释至1×105个/mL,接种于96孔板中,每孔105个细胞。加入不同浓度的长春新碱、依托泊苷和卡铂,每种药物分三个浓度梯度(长春新碱浓度梯度为0.1、1.0、10 μg/mL,依托泊苷浓度梯度为0、50、100 μmol/L,卡铂浓度梯度为0、50、150 μmol/L)。每种药物分设7个复孔,设置对照组和空白组(以营养液代替试剂),培养2 d。向每孔分别加入20 μL MTT,继续培养12 h,将各个孔中的营养液全部吸出,溶解,振荡30 min,选择490 nm 波长,在酶联免疫检测仪上测定各孔光吸收值(OD值)。

表1 引物序列、长度及用途

1.2.3 检测细胞凋亡及细胞内药物蓄积实验(流式细胞术)

1.2.3.1 细胞凋亡实验 将分选的ABCG2(+)与ABCG2(-)细胞稀释至1×105个/mL,放入培养箱中进行48 h的培养,然后实验组加入卡铂(浓度为1.0 μmol/L);对照组则不加卡铂。培养24 h后,收集待测细胞,并用3000 r/min离心6 min,弃上清液,乙醇固定18 h后离心,PBS洗涤细胞,加入5 μL山羊抗鼠FITC二抗,4℃,20 min,3~5次洗涤后上流式细胞仪检测细胞凋亡率。

1.2.3.2 细胞内药物蓄积实验 将分选的ABCG2(+)与ABCG2(-)细胞稀释至1×105个/mL,放入培养箱中进行培养24 h,然后加浓度为为1.0 μmol/L的卡铂试剂,接着在培养的第4小时和第24小时后,转移至新鲜培养基中继续培养2 h,收集待用细胞于3000 r/min离心机,离心5 min,弃上清液,乙醇固定24 h,PBS洗涤细胞3次,4℃,20 min,3~5次洗涤后上流式细胞仪,在448 nm的激光、679 nm的激光下,测定两组细胞加药后4、24 h内残留的卡铂试剂所释放的荧光强度。

1.2.4 观察候选microRNA在不同耐药性RB切片中的表达(行病理切片、LNA-原位杂交及realtimePCR实验)

病理科切片,行LRP、MRP1,P-gp免疫组化染色,收集高表达三种蛋白的RB标本6例作为高耐药组,均低表达的RB标本6例作为低耐药组;行LNA-原位杂交观察候选microRNA在高耐药组和低耐药组的定位并半定量检测;蜡块组织提取RNA,通过realtimePCR观察候选microRNA在两组中表达差异。

1.3 统计学方法

采用统计学软件SPSS 19.0 进行分析,正态分布计量资料以均数±标准差(x±s)表示,两组间计量资料采用t检验;计数资料以率表示,采用χ2检验。以P < 0.05为差异有统计学意义。

2 结果

2.1 分选阳性率

流式细胞仪分选Y79细胞中ABCG2(+)及ABCG2(-),分选后ABCG2(+)为91.7%,显著高于分选前(5.7%),差异有统计学意义(P < 0.05)。见图1。

分选前

分选后

图1 流式细胞仪检测ABCG2在Y79细胞分选前后的表达率

2.2 分选细胞对药物敏感性

MTT法检测ABCG2(+)及ABCG2(-)细胞对长春新碱、依托泊苷和卡铂的耐药性。长春新碱、依托泊苷和卡铂PPC达到0.1 μg/mL时,可杀灭和抑制ABCG2(-)细胞;长春新碱、依托泊苷和卡铂PPC达到1.0 μg/mL时,ABCG2(+)表现出显著抗药,说明ABCG2(+)细胞在PPC 1.0 μg/mL长春新碱、依托泊苷和卡铂的作用下,依然不受其抑制生长;长春新碱、依托泊苷和卡铂PPC达到10.0 μg/mL水平以上,对ABCG2(+)细胞才出现抑制作用。对比各个浓度的长春新碱、依托泊苷和卡铂对ABCG2细胞的作用显示,ABCG2(+)细胞有显著高于ABCG2(-)细胞的耐药性,差异有统计学意义(P < 0.05)。在3种化疗药物中,卡铂抑制细胞生长的作用最为显著,尤其对ABCG2(-)细胞的抑制最为明显。见图2。

卡铂

依托泊苷

长春新碱

与ABCG2(-)组比较,*P < 0.05

图2 ABCG2(+)/ABCG2(-)细胞对药物敏感性

2.3 流式细胞仪检测分选细胞的凋亡率和细胞内药物蓄积(经PPC 1.0 μg/mL卡铂处理)

应用流式细胞仪,对ABCG2(+)和ABCG2(-)细胞在0、24、48 h凋亡率的检测结果显示:ABCG2(-)细胞的凋亡率显著大于ABCG2(+)细胞,且凋亡率与用药时间有关。ABCG2(-)出现“亚G1峰”,且随时间发展而累积,说明有越来越多的细胞凋亡和坏死;ABCG2(+)未出现“亚G1峰”,说明ABCG2(+)细胞未出现明显凋亡和坏死。ABCG2(+)明显低于ABCG2(-),差异有统计学意义(P < 0.05)。见图3。

应用流式细胞仪,对ABCG2(+)及ABCG2(-)细胞4、24 h时卡铂荧光强度进行监测(反映卡铂在细胞内蓄积水平)。峰值及荧光强度表现为:ABCG2(-)细胞峰值右移、平均荧光强度为9.78和15.35,表明细胞内卡铂蓄积量增加;ABCG2(+)细胞峰值左移、平均荧光强度为4.39和2.17,表明细胞内卡铂蓄积量减少。ABCG2(+)的药物蓄积明显低于ABCG2(-),差异有统计学意义(P < 0.05)。见图4。

2.4 候选microRNA在不同耐药性RB切片中的表达

通过对RB病理切片中的高耐药组的与低耐药组的rt-PCR观察,发现高耐药组的microRNA表达率(39.3%)明显高于低耐药组的microRNA表达率低(5.2%),差异有统计学意义(P < 0.05)。见表2。

3 讨论

视网膜母细胞瘤(RB)是儿童最常见的原发性眼内恶性肿瘤。临床多表现为瞳孔区反射黄白色光,患儿视力减退,甚至造成斜视。肿瘤组织可通过视网膜进入玻璃体,甚至经淋巴结及血液循环转移至全身,导致患儿死亡。由于RB的化学减容治疗效果不佳,多数患者只能通过眼球摘除术控制肿瘤细胞的增生,造成患儿终身眼疾,严重影响了患者的身心健康。有关研究显示,RB化疗效果不佳主要是由于其表达多种耐药相关的蛋白,包括P-糖蛋白P-gpMRP、LRP等[7]。为提高化疗对RB的治疗效果,学者开始研究视网膜母细胞多药耐药性的机制。研究发现,恶性肿瘤对化疗的耐药性根据耐药谱可分为原药耐药和多药耐药(multi-drug resistance,MDR),其中MDR是由一种药物诱发,但同时又对其他多种结构和作用机制迥异的抗癌药物产生交叉耐药,是大多数恶性肿瘤化疗效果不佳最主要的原因[8-9]。肿瘤干细胞(CSCs),具有自我更新和多向分化能力。肿瘤干细胞耐药这一特征,被认为是肿瘤复发、转移、多药耐药的根源[10]。MicroRNA即小RNA,通过结合靶标mRNA抑制蛋白表达,从而构成了一种新的蛋白表达调控机制。由于microRNA与肿瘤干细胞的侵袭性和耐药性密切相关,因此调控microRNA可以抑制肿瘤干细胞的耐药性,提高其对化疗的敏感性。为探究MicroRNA调控人视网膜母细胞瘤肿瘤干细胞多药耐药性的机制,本研究组通过ABCG2分选RB细胞系Y79中的肿瘤干细胞,结合临床组织标本筛选RB耐药相关microRNA并进一步研究其功能,探索RB肿瘤干细胞调控多药耐药性的分子机制。

本研究结果显示:①分选阳性率:分选前阳性率仅为5.7%,说明ABCG2(+)细胞只是Y79细胞中的含量极少的亚群,通过流式细胞仪分选后阳性率提升至91.7%,有效提高了ABCG2(+)纯度,为下一步实验提供了高纯度细胞。②分选细胞对长春新碱、依托泊苷和卡铂的药物敏感性:长春新碱、依托泊苷和卡铂PPC达到0.1 μg/mL时,可杀灭和抑制ABCG2(-)细胞;长春新碱、依托泊苷和卡铂PPC达到1.0 μg/mL时,ABCG2(+)表现出显著抗药,说明ABCG2(+)细胞在PPC 1.0 μg/mL长春新碱、依托泊苷和卡铂的作用下,依然不受其抑制;长春新碱、依托泊苷和卡铂 PPC达到10.0 μg/mL水平以上,对ABCG2(+)细胞才出现抑制作用。对比各个浓度的长春新碱、依托泊苷和卡铂对ABCG2细胞的作用显示,ABCG2(+)细胞有显著高于ABCG2(-)细胞的耐药性,差异有统计学意义(P<0.05)。说明ABCG2(+)细胞对多种化疗药物均有耐药性,即对化疗药物具有多药耐药性。有关研究指出ABCG2可促进细胞排出化学药,是当今最常用的耐药标记蛋白之一[11]。有学者利用ABCG2为标志物从RB细胞系和Y79细胞系中分选出了肿瘤干细胞(CSCs),并且发现这种CSCs的自我更新和体内肿瘤形成能力受Wnt/β-catenin通路调节,且对组织的耐药性有一定影响[12-14]。③流式细胞仪检测分选细胞的凋亡率和细胞内药物蓄积(经PPC 1.0 μg/mL卡铂处理)应用流式细胞仪,对ABCG2(+)和ABCG2(-)细胞在0、24、48 h凋亡率的检测:ABCG2(-)细胞的凋亡率显著大于ABCG2(+)细胞,且凋亡率与用药时间有关。ABCG2(-)组出现“亚G1峰”,且随时间发展而累积,说明有越来越多的细胞凋亡和坏死;ABCG2(+)组未出现“亚G1峰”,说明ABCG2(+)细胞未出现明显凋亡和坏死。两组凋亡率比较,ABCG2(+)组明显低于ABCG2(-)组,差异有统计学意义(P < 0.05);应用流式细胞仪,对ABCG2(+)及ABCG2(-)细胞4、24 h时卡铂荧光强度进行监测(反映卡铂在细胞内蓄积水平)。峰值及荧光强度表现为:ABCG2(-)细胞峰值右移、平均荧光强度为9.78和15.35,表明细胞内卡铂蓄积量增加;ABCG2(+)细胞峰值左移、平均荧光强度为4.39和2.17,表明细胞内卡铂蓄积量减少。ABCG2(+)组的药物蓄积明显低于ABCG2(-)组,差异有统计学意义(P < 0.05)。进一步说明ABCG2(+)细胞的抗药性强劲且对化疗药物的蓄积量极低,这一特性提高了ABCG2(+)细胞对药物的耐药性。④候选microRNA在不同耐药性RB切片中的表达:通过对RB病理切片中的高耐药组与低耐药组的rt-PCR观察,发现高耐药组的microRNA表达率(39.3%)明显高于低耐药组的microRNA表达率低(5.2%),差异有统计学意义(P < 0.05)。有学者指出在视网膜前体细胞中RB基因,P53基因,microRNA-17~92同时表达下降时可以抑制RB的形成,从而抑制耐药性[15]。由此可以看出microRNA在调节肿瘤干细胞多药耐药性中起到了重要作用。

综上所述,microRNA是调控人视网膜母细胞瘤肿瘤干细胞多药耐药性的重要因素,可通过调控microRNA来抑制肿瘤干细胞的耐药性,提高对化疗的敏感性,有利于视网膜母细胞瘤患者的治愈。

[参考文献]

[1] Kivel■ T. The epidemiological challenge of the most frequent eye cancer:retinoblastoma,an issue of birth and death [J]. British Journal of Ophthalmology,2012,93(9): 1129-1131.

[2] Chang CY,Chiou TJ,Hwang B,et al. Retinoblastoma in Taiwan:survival rate and prognostic factors [J]. Japanese Journal of Ophthalmology,2013,50(3):242-249.

[3] Bai S,Ren R,Li B,et al. Delay in the diagnosis of retinoblastoma in China [J]. Acta Ophthalmologica,2011,89(1):e72-e74.

[4] Li B,Gao R,Zhang H, et al. Studies on multidrug resistance associated protein in retinoblastoma [J]. Zhonghua Yan Ke Za Zhi,2011,45(4):314-317.

[5] Gündüz K,Günalp I,Yalcndag N,et al. Causes of chemoreduction failure in retinoblastoma and analysis of associated factors leading to eventual treatment with external beam radiotherapy and enucleation [J]. Ophthalmology,2014,111(10):1917-1924.

[6] 钟秀风,李永平,葛坚,等.人视网膜母细胞瘤肿瘤干细胞的分离培养[J].中国病理生理杂志,2012,22(6):1177-1181.

[7] Yuan J,Chen L,Chen X,et al. Identification of serum microRNA-21 as a biomarker for chemosensitivity and prognosis in human osteosarcoma [J]. Journal of International Medical Research,2012,40(6):2090-2097.

[8] Meng F,Glaser SS,Francis H, et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells [J]. Journal of Cellular and Molecular Medicine,2012,16(1):160-173.

[9] Jeon HM,Sohn YW,Oh SY,et al. ID4 Imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2 [J]. Cancer Research,2011,71(9):3410-3421.

[10] 邓永文,方加胜,李茗初,等.胶质瘤中肿瘤干细胞的分离,培养及鉴定[J].中国现代医学杂志,2005,15(16):2449-2452.

[11] Zhu Y,Yu F,Jiao Y,et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5 [J]. Clinical Cancer Research,2011, 17(22):7105-7115.

[12] Xiang Y,Ma N,Wang D,et al. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly:a novel epigenetic therapy independent of decitabine [J]. Oncogene, 2014,33(3):378-386.

[13] Mitra M,Kandalam M,Harilal A,et al. EpCAM is a putative stem marker in retinoblastoma and an effective target for T-cell-mediated immunotherapy [J]. Mol Vis,2012,18:290-308.

[14] Bhatnagar N,Li X,Padi SK,et al. Down regulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells [J]. Cell Death & Disease,2010,1(12):e105.

[15] Misawa A,Katayama R,Koike S,et al. AP-1-Dependent miR-21 expression contributes to chemoresistance in cancer stem cell-like SP cells [J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics,2010,19(1):23-33.

(收稿日期:2014-06-16 本文编辑:苏 畅)

综上所述,microRNA是调控人视网膜母细胞瘤肿瘤干细胞多药耐药性的重要因素,可通过调控microRNA来抑制肿瘤干细胞的耐药性,提高对化疗的敏感性,有利于视网膜母细胞瘤患者的治愈。

[参考文献]

[1] Kivel■ T. The epidemiological challenge of the most frequent eye cancer:retinoblastoma,an issue of birth and death [J]. British Journal of Ophthalmology,2012,93(9): 1129-1131.

[2] Chang CY,Chiou TJ,Hwang B,et al. Retinoblastoma in Taiwan:survival rate and prognostic factors [J]. Japanese Journal of Ophthalmology,2013,50(3):242-249.

[3] Bai S,Ren R,Li B,et al. Delay in the diagnosis of retinoblastoma in China [J]. Acta Ophthalmologica,2011,89(1):e72-e74.

[4] Li B,Gao R,Zhang H, et al. Studies on multidrug resistance associated protein in retinoblastoma [J]. Zhonghua Yan Ke Za Zhi,2011,45(4):314-317.

[5] Gündüz K,Günalp I,Yalcndag N,et al. Causes of chemoreduction failure in retinoblastoma and analysis of associated factors leading to eventual treatment with external beam radiotherapy and enucleation [J]. Ophthalmology,2014,111(10):1917-1924.

[6] 钟秀风,李永平,葛坚,等.人视网膜母细胞瘤肿瘤干细胞的分离培养[J].中国病理生理杂志,2012,22(6):1177-1181.

[7] Yuan J,Chen L,Chen X,et al. Identification of serum microRNA-21 as a biomarker for chemosensitivity and prognosis in human osteosarcoma [J]. Journal of International Medical Research,2012,40(6):2090-2097.

[8] Meng F,Glaser SS,Francis H, et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells [J]. Journal of Cellular and Molecular Medicine,2012,16(1):160-173.

[9] Jeon HM,Sohn YW,Oh SY,et al. ID4 Imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2 [J]. Cancer Research,2011,71(9):3410-3421.

[10] 邓永文,方加胜,李茗初,等.胶质瘤中肿瘤干细胞的分离,培养及鉴定[J].中国现代医学杂志,2005,15(16):2449-2452.

[11] Zhu Y,Yu F,Jiao Y,et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5 [J]. Clinical Cancer Research,2011, 17(22):7105-7115.

[12] Xiang Y,Ma N,Wang D,et al. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly:a novel epigenetic therapy independent of decitabine [J]. Oncogene, 2014,33(3):378-386.

[13] Mitra M,Kandalam M,Harilal A,et al. EpCAM is a putative stem marker in retinoblastoma and an effective target for T-cell-mediated immunotherapy [J]. Mol Vis,2012,18:290-308.

[14] Bhatnagar N,Li X,Padi SK,et al. Down regulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells [J]. Cell Death & Disease,2010,1(12):e105.

[15] Misawa A,Katayama R,Koike S,et al. AP-1-Dependent miR-21 expression contributes to chemoresistance in cancer stem cell-like SP cells [J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics,2010,19(1):23-33.

(收稿日期:2014-06-16 本文编辑:苏 畅)

综上所述,microRNA是调控人视网膜母细胞瘤肿瘤干细胞多药耐药性的重要因素,可通过调控microRNA来抑制肿瘤干细胞的耐药性,提高对化疗的敏感性,有利于视网膜母细胞瘤患者的治愈。

[参考文献]

[1] Kivel■ T. The epidemiological challenge of the most frequent eye cancer:retinoblastoma,an issue of birth and death [J]. British Journal of Ophthalmology,2012,93(9): 1129-1131.

[2] Chang CY,Chiou TJ,Hwang B,et al. Retinoblastoma in Taiwan:survival rate and prognostic factors [J]. Japanese Journal of Ophthalmology,2013,50(3):242-249.

[3] Bai S,Ren R,Li B,et al. Delay in the diagnosis of retinoblastoma in China [J]. Acta Ophthalmologica,2011,89(1):e72-e74.

[4] Li B,Gao R,Zhang H, et al. Studies on multidrug resistance associated protein in retinoblastoma [J]. Zhonghua Yan Ke Za Zhi,2011,45(4):314-317.

[5] Gündüz K,Günalp I,Yalcndag N,et al. Causes of chemoreduction failure in retinoblastoma and analysis of associated factors leading to eventual treatment with external beam radiotherapy and enucleation [J]. Ophthalmology,2014,111(10):1917-1924.

[6] 钟秀风,李永平,葛坚,等.人视网膜母细胞瘤肿瘤干细胞的分离培养[J].中国病理生理杂志,2012,22(6):1177-1181.

[7] Yuan J,Chen L,Chen X,et al. Identification of serum microRNA-21 as a biomarker for chemosensitivity and prognosis in human osteosarcoma [J]. Journal of International Medical Research,2012,40(6):2090-2097.

[8] Meng F,Glaser SS,Francis H, et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells [J]. Journal of Cellular and Molecular Medicine,2012,16(1):160-173.

[9] Jeon HM,Sohn YW,Oh SY,et al. ID4 Imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2 [J]. Cancer Research,2011,71(9):3410-3421.

[10] 邓永文,方加胜,李茗初,等.胶质瘤中肿瘤干细胞的分离,培养及鉴定[J].中国现代医学杂志,2005,15(16):2449-2452.

[11] Zhu Y,Yu F,Jiao Y,et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5 [J]. Clinical Cancer Research,2011, 17(22):7105-7115.

[12] Xiang Y,Ma N,Wang D,et al. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly:a novel epigenetic therapy independent of decitabine [J]. Oncogene, 2014,33(3):378-386.

[13] Mitra M,Kandalam M,Harilal A,et al. EpCAM is a putative stem marker in retinoblastoma and an effective target for T-cell-mediated immunotherapy [J]. Mol Vis,2012,18:290-308.

[14] Bhatnagar N,Li X,Padi SK,et al. Down regulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells [J]. Cell Death & Disease,2010,1(12):e105.

[15] Misawa A,Katayama R,Koike S,et al. AP-1-Dependent miR-21 expression contributes to chemoresistance in cancer stem cell-like SP cells [J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics,2010,19(1):23-33.

(收稿日期:2014-06-16 本文编辑:苏 畅)