导数与数学建模问题
2014-08-11
利用导数解决实际生活中的一些问题,进一步加深对导数本质的理解,逐步提高分析问题、探索问题以及解决实际应用问题等各种综合能力.
此类试题主要是利用函数、不等式与导数相结合设计实际应用问题,一般是从给定的数量关系中选取一个恰当的变量,建立函数模型,然后根据目标函数的结构特征(非常规函数),确定运用导数最值理论去解决问题. 对阅读理解、信息归纳等数学思想方法的运用要求较高,这也是新高考中的一个热点.
某园林公司计划在一块O为圆心,R(R为常数,单位为米)为半径的半圆形(如图1)地上种植花草树木,其中弓形CMDC区域用于观赏样板地,△OCD区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.
(1)设∠COD=θ(单位:弧度),用θ表示弓形CMDC的面积S弓=f(θ);
(2)园林公司应该怎样规划这块土地,才能使总利润最大?并求相对应的θ.endprint
利用导数解决实际生活中的一些问题,进一步加深对导数本质的理解,逐步提高分析问题、探索问题以及解决实际应用问题等各种综合能力.
此类试题主要是利用函数、不等式与导数相结合设计实际应用问题,一般是从给定的数量关系中选取一个恰当的变量,建立函数模型,然后根据目标函数的结构特征(非常规函数),确定运用导数最值理论去解决问题. 对阅读理解、信息归纳等数学思想方法的运用要求较高,这也是新高考中的一个热点.
某园林公司计划在一块O为圆心,R(R为常数,单位为米)为半径的半圆形(如图1)地上种植花草树木,其中弓形CMDC区域用于观赏样板地,△OCD区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.
(1)设∠COD=θ(单位:弧度),用θ表示弓形CMDC的面积S弓=f(θ);
(2)园林公司应该怎样规划这块土地,才能使总利润最大?并求相对应的θ.endprint
利用导数解决实际生活中的一些问题,进一步加深对导数本质的理解,逐步提高分析问题、探索问题以及解决实际应用问题等各种综合能力.
此类试题主要是利用函数、不等式与导数相结合设计实际应用问题,一般是从给定的数量关系中选取一个恰当的变量,建立函数模型,然后根据目标函数的结构特征(非常规函数),确定运用导数最值理论去解决问题. 对阅读理解、信息归纳等数学思想方法的运用要求较高,这也是新高考中的一个热点.
某园林公司计划在一块O为圆心,R(R为常数,单位为米)为半径的半圆形(如图1)地上种植花草树木,其中弓形CMDC区域用于观赏样板地,△OCD区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元.
(1)设∠COD=θ(单位:弧度),用θ表示弓形CMDC的面积S弓=f(θ);
(2)园林公司应该怎样规划这块土地,才能使总利润最大?并求相对应的θ.endprint