具时滞广义CohenGrossberg神经网络的全局渐近稳定性
2014-06-24全志勇吴奇锋
全志勇++吴奇锋
摘 要 利用同胚映射原理、线性矩阵不等式和构造的Lyapunov泛函研究了一类CohenGrossberg神经网络平衡点的全局渐近稳定性,优化了现有文献中关于全局渐近稳定性的判据.
关键词 广义CohenGrossberg神经网络;全局渐近稳定性;线性矩阵不等式;同胚
中图分类号 O175.1 文献标识码 A
Global Asymptotic Stability of Generalized
CohenGrossberg Neural Networks with Delays
QUAN Zhiyong, WU Qifeng
(College of Mathematics and Econometrics, Hunan University,Changsha, Hunan 410082, China)
Abstract By means of Homeomorphism theory, linear matrix inequality and constructing a Lyapunov functional, we studied the global asymptotic stability of the equilibrium point for a class of CohenGrossberg neural networks. In our results, the criteria for the global asymptotical stability are better than that in existing papers.
Key words generalized CohenGrossberg neural networks; global asymptotic stability; linear matrix inequality; Homeomorphism
1 引 言
由于CohenGrossberg神经网络(CGNN)在并行计算、联想记忆,特别是最优化计算等领域的重要作用,近年来,有或无时滞的 CGNN特别是一维CGNN的稳定性问题已为国内外学者所广泛关注和研究,各种有趣的结果也被发表[1-6].然而,只有几个作者讨论了二维CGNN模型的稳定性问题[7-10].在许多应用中,由于二维CGNN考虑两个神经网络之间的相互作用,因此对二维CGNN稳定性的研究比对一维CGNN稳定性的研究更有趣.这促使我们研究二维CGNN的稳定性.
本文将用不同于文献[7]中的方法,即通过应用同胚映射原理、不等式、线性矩阵不等式和构造的Lyapunov泛函,对文献[7]中具有多时滞的广义二维CGNN的全局稳定性继续讨论,得到了全局渐近稳定性的新结果.当把网络降低为一维CGNN时,获得的的结果不同于现有文献中的结果.在本文的结果中,去除了对行为函数在文献[1-3]中的单调性假设和文献[4,5]中的可微性假设,对激励函数去除了在文献[1-5]中的有界性假设和文献[2-5]中的单调性假设.同讨论的二维CGNN相比,在所得结果中,也去除了文献[10]中对行为函数的单调性和可微性假设及对激励函数的单调性假设和逆Lipschitz条件.由于用于研究全局渐近稳定性的方法不同于文献[7,8]中所用方法,因此关于全局渐近稳定性的结果也不同于文献[7,8]中所得到的结果.也就是说,在本文的结果中,文献[7,8]中对行为函数的Lipschitz条件和文献[8]中对行为函数的反函数的Lipschitz条件为两个不等式所替代,而参数限制条件为两个线性矩阵不等式所替代.因此得到了CGNN全局渐近稳定性的新结果.
2 模型及假设
5 结 论
本文首先利用同胚映射原理讨论了具多时滞广义CohenGrossberg神经网络平衡点的存在性和唯一性,继而应用平衡点的存在性结果、线性矩阵不等式和构造的Lyapunov泛函研究了上述系统的全局渐近稳定性,所得结果优化了现有文献中关于全局渐近稳定性的判据,而且所给判据是有效而实用的.
参考文献
[1] S ARIK, Z ORMAN. Global stability analysis of CohenGrossberg neural networks with time varying delays [J]. Phys. Lett. A,2005,341(5-6):410-421.
[2] B T CUI, W WU. Global exponential stability of CohenGrossberg neural networks with distributed delays [J]. Neurocomputing,2008,72(1-3):386-391.
[3] Z ORMAN, S ARIK. New results for global stability of CohenGrossberg neural networks with multiple time delays [J]. Neurocomputing,2008,71(16-18):3053-3063.
[4] W WU, B T CUI, X Y LOU. Some criteria for asymptotic stability of CohenGrossberg neural networks with time varying delays [J]. Neurocomputing,2007,70(4-6):1085-1088.
[5] J FENG, S XU. New criteria on global robust stability of CohenGrossberg neural networks with time varying delays [J]. Neurocomputing,2008,72(1-3):445-457.endprint
[6] Z S WANG, H G ZHANG, W YU. Robust stability criteria for interval CohenGrossberg neural networks with time varying delay [J]. Neurocomputing, 2009,72(4-6):1105-1110.
[7] Z Q ZHANG, D M ZHOU. Global robust exponential stability for secondorder CohenGrossberg neural networks with multiple delays [J]. Neurocomputing, 2009,73(1-3):213-218.
[8] H J JIANG, J D CAO. BAMtype CohenGrossberg neural networks with time delays [J]. Mathematical and Computer Modelling, 2008,47(1-2):92-103.
[9] H Y ZHAO, L WANG. Hopf bifurcation in CohenGrossberg neural network with distributed delays [J]. Nonlinear Analysis: Real World Applications,2007,8(1):73-89.
[10]X B NIE, J D CAO. Stability analysis for the generalized CohenGrossberg neural networks with inverse Lipschitz neuron activations [J]. Computer and Math Appli, 2009, 57(9):1522-1536.
[11]M FORTI, A TESI. New conditions for global stability of neural networks with application to linear and quadratic programming problems [J]. IEEE Trans Circuit System I, 1995,42(7):345-366.endprint
[6] Z S WANG, H G ZHANG, W YU. Robust stability criteria for interval CohenGrossberg neural networks with time varying delay [J]. Neurocomputing, 2009,72(4-6):1105-1110.
[7] Z Q ZHANG, D M ZHOU. Global robust exponential stability for secondorder CohenGrossberg neural networks with multiple delays [J]. Neurocomputing, 2009,73(1-3):213-218.
[8] H J JIANG, J D CAO. BAMtype CohenGrossberg neural networks with time delays [J]. Mathematical and Computer Modelling, 2008,47(1-2):92-103.
[9] H Y ZHAO, L WANG. Hopf bifurcation in CohenGrossberg neural network with distributed delays [J]. Nonlinear Analysis: Real World Applications,2007,8(1):73-89.
[10]X B NIE, J D CAO. Stability analysis for the generalized CohenGrossberg neural networks with inverse Lipschitz neuron activations [J]. Computer and Math Appli, 2009, 57(9):1522-1536.
[11]M FORTI, A TESI. New conditions for global stability of neural networks with application to linear and quadratic programming problems [J]. IEEE Trans Circuit System I, 1995,42(7):345-366.endprint
[6] Z S WANG, H G ZHANG, W YU. Robust stability criteria for interval CohenGrossberg neural networks with time varying delay [J]. Neurocomputing, 2009,72(4-6):1105-1110.
[7] Z Q ZHANG, D M ZHOU. Global robust exponential stability for secondorder CohenGrossberg neural networks with multiple delays [J]. Neurocomputing, 2009,73(1-3):213-218.
[8] H J JIANG, J D CAO. BAMtype CohenGrossberg neural networks with time delays [J]. Mathematical and Computer Modelling, 2008,47(1-2):92-103.
[9] H Y ZHAO, L WANG. Hopf bifurcation in CohenGrossberg neural network with distributed delays [J]. Nonlinear Analysis: Real World Applications,2007,8(1):73-89.
[10]X B NIE, J D CAO. Stability analysis for the generalized CohenGrossberg neural networks with inverse Lipschitz neuron activations [J]. Computer and Math Appli, 2009, 57(9):1522-1536.
[11]M FORTI, A TESI. New conditions for global stability of neural networks with application to linear and quadratic programming problems [J]. IEEE Trans Circuit System I, 1995,42(7):345-366.endprint