逆向思维在数学教学中的探讨
2014-05-30金怡双
金怡双
【摘要】本文主要探讨逆向思维在数学教学中的一些应用,在求解极限和常微分方程等方面运用逆向思维分析解决问题.
【关键词】逆向思维;应用;极限
【中图分类号】O13
【文献标识码】A
逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式,是数学解题方法中一种常用的方法.在数学解题中,根据问题的特点,在用正向思维很难或者根本无法解决时,宜逆转思维方向,如考虑间接方法,考虑递推,考虑研究逆否命题,考虑问题的不可能性,反证法,分析法等,逆向思维可能帮助我们开辟新的解题途径,避开繁杂的计算,使问题简化而得以顺利解决.本文将主要举例探讨逆向思维在数学教学中的应用,并指出在应用中需要注意的问题.
1.利用定义的可逆性
首先我们要清楚“凡是定义都是一种特殊的命题”,该类命题中条件和结论互为充要条件,即任何定义类命题的逆命题都是真命题,恰当利用定义的“可逆性”,可使解题灵活简洁.如利用定积分或导数的定义求极限,就可以避免繁杂的计算,使问题解决迅速准确.
4.逆向思维分析
函数的定义中,我们习惯性把变量x当作自变量,变量y作为函数,尤其是反函数的求解过程中最能体现这一点.在遇到实际问题时,逆向思维还体现在打破这种习惯性常规思维定式,寻求突破.
【参考文献】
[1]华东师范大学数学系.数学分析(第二版)[M].北京:高等教育出版社,2007.
[2]周家良,王群智.高等数学[M].西安:西北大学出版社,2007.
[3]刘伟.逆向思维在函数解题中的运用[J].上海中学数学,2008 (9).
[4]杨广才.數学教学中要注意“互逆联想”能力的训练与培养[A].教研撷华——青海师大附中建校45周年论文集[C].1999.
[5]朱如恒.数学教学中的逆向思维[J].工科数学,1990(6).
[6]向秋卿.高等数学教学中逆向思维能力的培养[J].中国西部科技,2010.
[7]汤兴林.浅谈数学教学中逆向思维能力的培养[J].数学教学通讯,2003.
[8]赵景伦.数学解题中逆向思维的培养途径 [J].数学教学通讯,2003(8).