宰后牦牛肉骨骼肌细胞凋亡过程研究
2014-04-29孙志昶等
孙志昶等
摘 要:为研究宰后牦牛肉在成熟过程中前驱肱三头肌(triceps brachi,TB)、中部背最长肌(musculus longissimus,ML)、后驱半膜肌(semimembranosus,SM)中骨骼肌细胞凋亡过程的发生,选取24头甘南黑牦牛按照伊斯兰屠宰方式进行屠宰,于0~4 ℃、风速0.5 m/s条件下成熟,在宰后成熟过程中的不同时间点(1、3、5、7 d)进行细胞核的He染色观察、原位末端法检测骨骼肌细胞凋亡率以及caspase-3活力测定。宰后1 d,TB、ML和SM的骨骼肌细胞核结构完整,并且轮廓清晰,核质均匀分布;随着成熟时间的延长核染色质凝聚在核膜下呈月牙状,细胞核浓缩破裂形成凋亡小体,细胞体积皱缩变小。在宰后前3 d的ML和SM中几乎检测不到阳性细胞核;宰后5 d后TB和SM中阳性细胞核显著增多(P<0.01);宰后7 d,TB和ML中阳性细胞核数量差异极显著
(P<0.01);宰后12 h caspase-3 活力显著高于宰后0.5 h的活力(TB,P<0.01;ML,P<0.001;SM,
P<0.01);宰后12 h ML的caspase-3达到最高活力,较宰后0.5 h 酶活力升高273.01%;TB和SM在宰后1 d达到最高活力,较宰后0.5 h 酶活力分别升高了273.93%和386.17%;宰后5 d TB、ML和SM的caspase-3活力下降到最小值。结果表明:宰后成熟过程中牦牛肉的骨骼肌细胞核浓缩破裂形成凋亡小体和caspase-3活力的激活,同时阳性细胞核的检出并且数量随成熟时间增大,这一切都说明宰后牦牛肉骨骼肌细胞中发生了细胞凋亡,为宰后牦牛肉成熟机制提供一个更加合理、系统的解释途径。
关键词:牦牛;成熟;细胞核;TUNEL;细胞凋亡
An Investigation of Skeletal Muscle Apoptosis during Postmortem Aging of Yak Meat
SUN Zhi-chang1 , YU Qun-li1, HAN Lin1, ZHANG Wen-hua2, YANG Qin3
(1. College of Food Science and Engineering, Gansu Agriculture University, Lanzhou 730070, China; 2. Ningxia Xiahua Meat Food Co. Ltd., Zhongwei 755000, China; 3. Gannan Institute of Animal Science and Veterinary, Hezuo 747000, China)
Abstract: The purpose of this study was to shed light on the occurrence of skeletal muscle apoptosis in triceps brachi (TB), musculus longissimus (ML), semimembranosus (SM) muscles from yak meat during postmortem aging. Totally 24 Ganan black yaks were selected and slaughtered in the Islamic way, and different muscles were excised from each carcass and aged under the conditions of 0–4 ℃ and 0.5 m/s for air flow rate. Morphological observation of the cell nucleus was performed using He staining at different time points during the aging process, and apoptotic index was measured by in situ end-labeling. Meanwhile, caspase-3 activity was assayed. At 1 d postmortem, the structure of the cell nucleus in the skeletal muscles TB, ML and SM was complete and apparent with evenly distributed nucleoplasm. As the aging progressed, the chromatin inside the nucleus was agglomerated to form a crescent-like shape, the cell nucleus was concentrated and broken, forming apoptotic bodies, and as a result, the cells were shrunk. Almost no positive cell nuclei were observed in ML and SM muscles within the first 3 d premortem. At 5 d postmortem, TB and SM muscles exhibited significantly increased counts of TUNEL-positive nuclei (P < 0.01), and at 7 d, a significant difference in the count TUNEL-positive nuclei was noticed between TB and ML muscles (P < 0.01). The caspase-3 activity was significantly higher at 12 h postmortem than at 0.5 h (TB, P < 0.01; ML, P < 0.001; SM, P < 0.01). In ML muscle, this enzyme activity reached the maximum level at 12 h postmortem, showing a 273.01% increase over that observed at 0.5 h. In contrast, the enzyme activity reached the maximum level at 1 h postmortem, which was higher by 273.93% and 386.17% than at 0.5 h, respectively. At 5 h, the minimum levels of caspase-3 activity were detected in all the three muscles. In conclusion, during postmortem aging, the concentration and breaking of the cell nuclei in yak skeletal muscles to form apoptotic bodies, increased levels of caspase-3 activity, and the detectable presence of TUNEL-positive nuclei, positively dependent on aging time, together confirm the occurrence of skeletal muscle apoptosis, which offers a systematic and reasonable way to interpret the mechanism of postmortem aging of yak meat.
Key words: yak; postmortem aging; morphology; TUNEL; apoptosis
中图分类号:TS251.52 文献标志码:A 文章编号:1001-8123(2014)05-0011-05
我国是世界上拥有牦牛数量最多的国家,世界95%以上的牦牛主要分布在以我国青藏高原为中心的高山草原上[1]。高海拔、远离污染、以天然牧草为食的生活环境,造就牦牛肉蛋白含量高、矿物质丰富、脂肪少,是消费者青睐的天然绿色食品[2-3]。
宰后成熟过程中肉的各项品质都会发生变化,随着成熟时间的延长,嫩度和风味会逐渐得到改善,肉的多汁性逐渐降低。Herrera-Mendez等[4]和Ouali等[5]发现宰后细胞骨架蛋白的降解是改善牛肉嫩度的主导因素。
Huang Ming等[6]认为动物宰后成熟过程pH值的下降,加速了糖酵解,细胞内外环境发生了变化,导致肌细胞变形,决定了肉的系水力和多汁性。由于动物宰后切断了肌肉组织与外界环境的主要沟通,肌肉中骨骼肌细胞必然发生细胞凋亡[7],成熟过程与凋亡过程类似,所以用细胞凋亡理论去解释肉类宰后成熟机制是当前研究的热点。
细胞凋亡(apoptosis)是能量依赖的细胞内死亡程序活化而致的细胞自杀,由多基因协调控制的细胞自主的、有序的死亡方式[8]。在ATP存在的条件下,由于线粒体的通透性增加,细胞色素C和促调亡蛋白因子被释放到胞桨中,连同其他蛋白激活半胱氨酸蛋白酶家族(caspase)下游效应酶Caspase-3从而诱导细胞凋亡,主要表现为细胞膜在凋亡小体形成前保持完整,染色质凝聚在核膜下呈月牙状,细胞核浓缩破裂形成凋亡小体,细胞体积皱缩变小[9]。Zhivotovsky等[10]等通过原位末端法(TdT-mediated dUTP nick-end labeling,TUNEL)分析观察到猪骨骼肌肌细胞变性过程中DNA的降解,凋亡细胞核的数量占总细胞核的0.5%~2%。Altznauer等[11]研究表明,肌肉组织中caspase-3蛋白的表达量与细胞凋亡量呈显著相关性。
然而,在肉品科学领域,与细胞特征性凋亡方式有关的,宰后骨骼肌细胞形态学以及生化研究非常缺乏。本实验研究牦牛肉宰后成熟过程中不同部位肉骨骼肌细胞核形态学特征、细胞核超微结构、细胞凋亡率和caspase-3活力的变化,从而确认细胞凋亡过程是否发生在宰后成熟过程中的牦牛肉骨骼肌细胞中,对宰后牦牛肉成熟机制提供一个更加合理、系统的解释途径,为提高牦牛肉宰后成熟工艺和产业化提供理论依据。
1 材料与方法
1.1 材料与试剂
牦牛由甘肃康美集团提供。选取在专门的饲养场,由同一个饲养员饲养,自然放养、发育正常、健康无疾病、年龄在2~4 岁体质量均匀的24 头黑牦牛,宰前禁食16~18 h,只提供水。
苏木素、伊红、中性树胶、饿酸、环氧树脂、多聚甲醛、H2O2、甲醛、TritonX-100、柠檬酸钠、NaCl、KCl、磷酸二钠、磷酸二氢钾 国药集团化学试剂有限公司;TUNEL试剂盒 瑞士Roche公司;Ac-DEVD-AMC、CHAPS、HEPES、五水硫酸铜、酒石酸钾钠、氢氧化钠均为分析纯。
1.2 仪器与设备
UV-250型紫外分光光度计 日本岛津公司;TGL-24MC型台式高速冷冻离心机 长沙英泰仪器有限公司;FA2004B型电子天平 上海佑科仪器有限公司;冰冻切
片机 德国莱卡公司;IX71显微镜 日本Olympus公司;H-7650透射电子显微镜 日本Hitachi公司。
1.3 方法
选择24 头年龄体质量相近的牦牛为实验对象,对其进行随机编号,集中屠宰,置于0~4 ℃、风速0.5 m/s环境下成熟。取每组中的前驱肱三头肌(triceps brachi,TB)、中部背最长肌(musculus longissimus,ML)、后驱半膜肌(semimembranosus,SM)3种不同部位肉样,于成熟时间点上(1、3、5、7 d)进行细胞核的He染色观察、细胞核的超微结构观察、TUNEL检测骨骼肌细胞凋亡率以及caspase-3活力测定。
1.3.1 牦牛肉宰后骨骼肌细胞核的He染色观察
取出液氮保持的组织样,连续切片横切10 μm的冷冻切片,固定于APES包被过的载玻片上,晾片5 min,苏木素染液浸染3 min,70%和80%乙醇梯度脱水,然后用85%乙醇配制的酸化的伊红溶液染色30s,80%、95%和100%梯度乙醇脱水,二甲苯通透,中性树胶封片。制备好的玻片在显微镜下进行观察,细胞核的形态观察需要在油镜下进行拍照。
1.3.2 原位末端法(TUNEL)检测骨骼肌细胞凋亡率
在冷冻切片机上将组织块连续切片,10 μm的横切片固定于载玻片上,室温下晾片5 min,于4%多聚甲醛溶液中固定,然后用含3% H2O2的甲醛溶液封闭,浸入含0.1% Triton X-100和0.1%柠檬酸钠溶液中通透。将通透好的切片用1×PBS(137 mmol/L NaCl、2.7 mmol/L
KCl、4.3 mmol/L磷酸二钠、1.4 mmol /L磷酸二氢钾、pH7.4)漂洗,沥干,用羊清封闭30 min,漂洗用1×PBS洗30 min,按照体积比1∶9加入末端标记酶和标记液配制成TUNEL 反应工作液,将反应工作液滴加覆盖切片,然后将切片放置于湿盒中,37 ℃避光孵育60 min,阴性对照组不加末端标记酶,采用标记液替代反应工作液,阳性对照组在添加TUNEL反应混合物之前先用5.1 U/mL的DNase I室温下孵育10 min。将处理好的组织用甘油封片,荧光显微镜观察和计数。每个样本在200 倍镜下至少计算3 个不同的视野,最终的凋亡量用平均每个正常细胞所含阳性凋亡细胞核数目来表示。
1.3.3 Caspase-3活力测定
取冷冻样品200 mg,在冷冻条件下0.5 mL,100 mol/L
mhepes(pH7.5、10%蔗糖、0.1% NP-40、10mol/L
m DTT)的裂解液中破碎,匀浆,反复冻融3次
(―20℃),18 000×g离心30 min,取上清液,置于4 ℃条件下备用。由20 μL裂解物上清液、 0.2 mL反应缓冲液(10% sucrose、0.1% CHAPS、100 mmol/L HEPES、pH7.5)和5 μL重建的荧光底物构成反应液。caspase-3的底物分别是Ac-DEVD-AMC。将反应液置于96孔板的酶标仪中在37 ℃条件下孵化1 h,然后分别于360 nm和460 nm的激发和发射波长下读取荧光强度。酶活力单位用每分钟、每毫克肉样的相对荧光强度表示。
1.4 统计分析
用SASS 19.0统计分析软件进行数据处理,用Origin 8作图软件进行图形制作。
2 结果与分析
2.1 牦牛肉宰后骨骼肌细胞核形态变化分析
a. TB 1d;b. TB 3d;c. TB 5d;d. TB 7d;e. ML 1d;f. ML 3d;
g. ML 5d;h. ML 7d;i. SM 1d;j. SM 3d;k. SM 5d;l. SM 7d。
图 1 牦牛肉宰后骨骼肌细胞核形态变化
Fig.1 Morohological changes of yak muscles during postmortem aging
如图1所示,宰后1 d TB、ML和SM 的骨骼肌细胞核结构完整,并且轮廓清晰,核质均匀分布。但是随着牦牛肉宰后成熟时间的延长,细胞间隙逐渐增大;如图中箭头所示,在宰后3、5、7 d中TB、ML和SM的部分细胞核核质开始向边缘迁移,形成类似半月形的嗜苏木素的凋亡小体,同时细胞核皱缩的增加,这种特征是典型的细胞凋亡[12];在这期间TB、ML和SM中部分细胞核的核质浓缩损失,形成没有核质的细胞核,这些特征表示细胞坏死。从图1中骨骼肌细胞的总体形态变化过程来看,牦牛宰后TB、ML和SM的骨骼肌细胞中同时发生了细胞凋亡和细胞坏死。
从宰后骨骼肌细胞形态学变化中发现,随着牦牛肉宰后成熟时间的延长,细胞间隙逐渐增大,Pinton[13]发现化学试剂有限公司骨骼肌细胞之间的间隙是由水分分布引起的,肌肉胞浆的酸化(pH值降低)会导致蛋白质电荷的下降及疏水性的提高,导致细胞间隙增大。Harwood等[14]研究发现,宰后4 d牛肉中pH值下降到最小值,随后呈上升趋势,但是本实验中宰后5 d到7 d细胞间隙继续增大,Becila等[15]认为pH值没有下降时细胞间隙的增大是因为细胞发生凋亡、产生皱缩而引起的。Porn-Ares等[16]观察到细胞凋亡过程中细胞只是分离,细胞本身没有发生分裂,与本实验结果类似,说明宰后成熟过程牦牛骨骼肌细胞中发生了细胞凋亡。
2.2 牦牛肉宰后骨骼肌细胞凋亡数量分析
细胞发生凋亡的过程中,由于骨骼肌细胞中DNA的降解和出现碎片化,从而产生大量的黏性3-OH末端,可用荧光标记的末端脱氧核昔酸转移酶(TdT)介导dUTP(fluorescein-dUTP)TUNEL法进行凋亡细胞核的检测[17],被认为是定性检测细胞凋亡的经典方法,具有灵敏性高、针对性强和可量化凋亡程度的特点。如图2所示,采用TUNEL染色法对宰后不同部位牦牛肉骨骼肌细胞的细胞凋亡率进行了检测,发现TB的凋亡细胞核的数量从宰后1d到宰后5d呈缓慢的线性增多,宰后5 d后迅速增多。在宰后前3 d 的ML和SM中几乎检测不到阳性细胞核,从宰后3 d 开始ML和SM中的阳性细胞核呈显著增加
(P<0.05),宰后5 d 后TB和SM中阳性细胞核显著增多(P<0.01)。宰后7 d,TB和ML中阳性细胞核数量差异极显著(P<0.01)。
图 2 牦牛肉宰后骨骼肌细胞凋亡率分析
Fig.2 The rate of apoptosis in yak muscles during postmortem aging
宰后5 d后TB和SM中阳性细胞核显著增多
(P<0.01),这与Ouali等[5]的研究结果相反,他们认为细胞凋亡可能发生在尸僵前,这可能是因为检测方法不同所造成的。宰后7d,TB和ML中阳性细胞核数量差异极显著(P<0.01 ),TB中的凋亡细胞核数量最多,其次是SM,最后是ML,这说明阳性细胞核数量的多少与特定的肌纤维组成有关。Gupta等[18]认为肌纤维是组成肌肉的基本单位,不同部位分割肉的纤维类型组成比例存在差异。Kemp等[19]在猪骨骼肌的检测中报道,不同部位肌肉中氧化型肌纤维(I 型)的比例差异显著。Brunelle等[20]研究证明肌纤维类型反应的是肌肉代谢特性,氧化型肌纤维(I 型)的比例不同,导致糖酵解和有氧代谢率不同,而Degterev等[21]发现肌肉中高比例的氧化型肌纤维(I 型)构成的肌肉线粒体对细胞凋亡更加敏感,说明肌肉组织中氧化型肌纤维(I 型)的比例与细胞凋亡存在某种联系。
2.3 牦牛肉宰后Caspase-3活力变化
图 3 牦牛肉宰后Caspase-3活力变化
Fig3 Caspases-3 activity changes of yak muscles during postmortem aging
Caspase-3为细胞调亡的重要执行分子,在细胞凋亡过程中起着关键性作用[22]。因此检测Caspase-3是否被激活也是判断细胞凋亡的一个重要手段。如图所示,宰后0.5h,TB、ML和SM中caspase-3无显著差异
(P>0.05),宰后12h caspase-3活力显著高于宰后0.5 h的活力(TB,P<0.01;ML,P<0.001;SM,
P<0.01)。宰后12 h ML的caspase-3达到最高活力,较宰后0.5 h酶活力升高273.01%;TB和SM在宰后1 d达到最高活力,较宰后0.5 h 酶活力分别升高了273.93%和386.17%。之后,TB、ML和SM的caspase-3活力出现显著下降趋势,宰后3 d ML 的caspase-3活力趋于平稳,差异不显著(P>0.05)。宰后5 d TB、ML和SM的caspase-3活力下降到最小值。
Underwood等[23]研究显示,牛肉宰后caspase-3酶活力无显著变化,与本研究结果相反。Kemp等[19]在宰后1h猪背最长肌中检测到caspase-3的酶原片段,宰后8h猪背最长肌中caspase-3活力达到最高值,与本研究结果相似,说明caspase-3参与了牦牛肉宰后成熟过程。Arur等[24]研究表明细胞色素C能与Apaf-1(调亡酶激活因子-1)、caspase-9前体和ATP/dATP形成Apoptosome(调亡小体),激活调亡caspase-3,从而引发caspase级联反应,导致细胞发生调亡,本实验中从宰后0.5 h检测到caspase-3活力,宰后12 h ML的caspase-3达到最高活力,由此判断出牦牛肉宰后骨骼肌细胞中发生了细胞凋亡。
3 结 论
宰后1d,TB、ML和SM的骨骼肌细胞核结构完整,并且轮廓清晰,核质均匀分布;随着成熟时间的延长核染色质凝聚在核膜下呈月牙状,细胞核浓缩破裂形成凋亡小体,细胞体积皱缩变小,这是细胞凋亡的典型征。
宰后前3 d的ML和SM中几乎检测不到阳性细胞核;宰后5 d 后TB和SM中阳性细胞核显著增多(P<0.01);宰后7 d,TB和ML中阳性细胞核数量差异极显著
(P<0.01)。
宰后12h caspase-3活力显著高于宰后0.5h的活力(TB,P<0.01;ML,P<0.001;SM,P<0.01);宰后12 h ML的caspase-3达到最高活力,较宰后0.5 h酶活力升高273.01%;TB和SM在宰后1 d达到最高活力,较宰后0.5 h酶活力分别升高了273.93%和386.17%;宰后5 d TB、ML和SM的caspase-3活力下降到最小值。
参考文献:
[1] 孙志昶, 冯晓琴, 韩玲, 等. 牦牛肉宰后成熟嫩化与细胞凋亡酶活力变化研究[J]. 农业机械学报, 2014, 45(1): 191-196; 202.
[2] 田甲春, 师希雄, 韩玲. 牦牛宰后成熟机理与肉用品质研究[J]. 农业机械学报, 2012, 43(12): 34-40.
[3] 孙志昶. 冷热剔骨工艺对牛肉品质的影响[J]. 农业工程学报, 2012, 28(1): 288-293.
[4] HERRERA-MENDEZ C H, BECILA S, BOUDJELLAL A, et al. Meat ageing: reconsideration of the current concept[J]. Trends in Food Science & Technology, 2006, 17(8): 394-405.
[5] OUALI A, HERRERA-MENDEZ C H, COULIS G, et al. Revisiting the conversion of muscle into meat and the underlying mechanisms[J]. Meat Science, 2006, 74(1): 44-58.
[6] HUANG Ming, HUANG Feng, MA Hanjuan, et al. Preliminary study on the effect of caspase-6 and calpain inhibitors on postmortem proteolysis of myofibrillar proteins in chicken breast muscle[J]. Meat Science, 2012, 90(3): 536-542.
[7] CHEN Lin, FENG Xiaochao, LU Feng, et al. Effects of camptothecin, etoposide and Ca2+ on caspase-3 activity and myofibrillar disruption of chicken during postmortem ageing[J]. Meat Science, 2011, 87(3): 165-174.
[8] HUFF LONERGAN E, ZHANG W, LONERGAN S M. Biochemistry of postmortem muscle-lessons on mechanisms of meat tenderization[J]. Meat Science, 2010, 86(1): 184-195.
[9] STENNICKE H R, SALVESEN G S. Properties of the caspases[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1998, 1387(1/2): 17-31.
[10] ZHIVOTOVSKY B, SAMALI A, GAHM A, et al. Caspases: their intracellular localization and translocation during apoptosis[J]. Cell Death and Differentiation, 1999, 6(7): 644-651.
[11] ALTZNAUER F, CONUS S,CAVALLI A, et al. Calpain-1 regulates Bax and subsequent Smac-dependent caspase-3 activation in neutrophil apoptosis[J]. Journal of Biological Chemistry, 2004, 279(7): 5947-5957.
[12] PARK K M, PRAMOD A B, KIM J H, et al. Molecular and biological factors affecting skeletal muscle cells after slaughtering and their impact on meat quality: a mini review[J]. Journal of Muscle Foods, 2010, 21(2): 280-307.
[13] PINTON P, FERRARI D, VIRGILIO F D, et al. Molecular machinery and signaling events in apoptosisi[J]. Drug Development Research, 2001, 52(4): 558-570.
[14] HARWOOD S M, YAQOOB M M, ALLEN D A. Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis[J]. Annals of Clinical Biochemistry, 2005, 42(Pt 6): 415-431.
[15] BECILA S, HERRERA-MENDEZ C, COULIS G, et al. Postmortem muscle cells die through apoptosis[J]. European Food Research and Technology, 2010, 231(3): 485-493.
[16] PORN-ARES M I, SAMALI A, ORRENIUS S. Cleavage of the calpain inhibitor,calpastatin, during apoptosis[J]. Cell Death And Differentiation, 1998, 5: 1028-1033.
[17] KEMP C M, KING D A, SHACKELFORD S D, et al. The caspase proteolytic system in callipyge and normal lambs in longissimus dorsi, semimembranosus and infraspinatus muscles during postmortem storage[J]. Journal of Animal Science, 2009, 11: 2009-1790.
[18] GUPTA S, GOLLAPUDI S. Susceptibility of naive and subsets of memory T cells to apoptosis via multiple signaling pathways[J]. Autoimmunity Reviews, 2007, 6(7): 476-481.
[19] KEMP C M, BARDSLEY R G, PARR T. Changes in caspase activity during the postmortem conditioning period and its relationship to shear force in porcine longissimus muscle[J]. Journal of Animal Science, 2006, 84(10): 312-316.
[20] BRUNELLE J K, CHANDE N S. Oxygen deprivation induced cell death: an update[J]. Apoptosis, 2002, 7(6): 475-482.
[21] DEGTEREV A, HUANG Z, BOYCE M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nature Chemical Biology, 2005, 1(2): 112-119.
[22] TALANIAN R, QUINLAN C, TRAUTZ S, et al. Substrate specificities of caspase family proteases[J]. Journal of Biological Chemistry, 1997, 272(15): 9677-9682.
[23] UNDERWOOD K R, MEANS W J, DU M. Caspase 3 is not likely involved in the postmortem tenderization of beef muscle[J]. Journal of Animal Science, 2008, 864:.28-32.
[24] ARUR S, UCHE U E, REZAUL K, et al. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment[J]. Developmental Cell, 2003, 4(4): 587-598.