不等式的高考试题分析及教学策略
2014-04-10陈宇轩
陈宇轩
不等式是高中数学的重要组成部分,同时也是高考中的热点问题和难点问题.在教学改革中,教师应摒弃原始的教学模式,探索新的教学方法,结合不等式的特点,通过合理的教学,让学生对不等式的知识产生深刻的印象,提高学生的基本技能、思维能力和分析解决问题的能力.
一、对高考试题中不等式内容的分析
近几年的高考试题中,对于不等式知识的考查侧重点发生了变化.不单独对不等式命题,而是将不等式分散到其他题型中,难度差别较大.一般选择题和填空题相对来说较简单,解答题的难度系数较大.对不等式的考查以综合试题为主,选择题和填空题主要是求解各种不等式的解集和运用不等式来求最值,而解答题一般都属于不等式结合数列、函数和导数等的综合考查.高考试题中,涉及的不等式问题的范围和深度不断增大和提高,充分体现了不等式在高中数学中的重要性和解题思路的独特性.客观题中主要是对不等式的解答方法和线性规划问题的考查.解答题一般考查的是含有参数的不等式的解、取值范围和最值等问题.既有直接对于不等式的解和证明的题目,也有运用不等式解决其他问题的题目.在这些问题中,不等式性质的掌握和对不等式的求解是最基本的技能.在求解函数的单点区间等问题时,需要利用不等式的性质,对题目进行分类讨论,而有些线性规划问题也综合体现了不等式对于解题的重要性,所以应对于不等式的教学给予足够的重视.借助现实和日常生活中所表现出的不等关系,让学生明确不等和相等关系,并将其作为一种解决问题的数学工具.教师应通过具体情境,使学生充分感受到实际生活中的不等关系,建立不等观念,处理不等关系,最大限度地加强学生对不等式的直观感知.
二、高中数学不等式的教学策略
在现行的高中数学课程基本理念的指导下,教学方式和过程发生了本质上的变化,教学理念从最基本的把知识装进学生的头脑中,变成一个沟通、理解和创新的全新过程,加入更多的分析和思考.这样的教学方式能够让学生结合他们所掌握的方法和获得的知识,创造性地解决实际问题.
1.创设问题情境,衔接不等式知识.数学知识是具有系统性和联系性的一个完整的知识体系,不等式的知识是从初中开始学习的,而高中阶段的不等式知识的学习,实质上是对于初中不等式学习的完善和提升过程.所以从符合学生对知识的认知规律和时代的发展要求来说,对高中阶段不等式知识的深入研究是非常必要的.
在进行新知识、新课程的教学时,从不等式课程标准和高考中对不等式的考查特点可以看出,不等式作为一种描述不等关系的模型,与现实生活密切相关.另外,从课程标准中不等式的内容安排和对学生的能力要求也可以看出,学生通过初中阶段不等式内容的学习,充分掌握了一元一次不等式(组)的解法和性质,能够运用基础的不等关系对具体问题中的数量关系进行处理,初步建立不等关系模型,对简单的不等式进行运算和推理.为此,教师应基于学生对不等式知识的理解状况进行教学,循序渐进地引导学生对不等式知识的学习,找出初中和高中不等式内容的连接点,对这部分知识进行衔接,为学生进一步学习不等式知识打下基础.
2.探索不等式解法,提高思维能力.在不等式中,性质和解法是最基本的.对于不等式的求解,则是一个重要的运算能力,掌握很强的运算能力,对运用、迁移所学的知识以及创新有着重要的作用.而且还必须重视对一些含有参数的不等式的练习,在学习不等式解题方法时,要将其融入整个数学环境中,结合函数、方程、数列、立体几何和解析几何等实际应用进行学习,注重各数学知识之间的联系.
3.通过推理论证,培养学生抽象思维.从不等式的教材和高考试题中关于不等式的内容来看,新课标对于一些证明方法的要求大大降低,而更加注重于体现不等式在解决实际问题中的作用.学生通过不等式的推理、论证过程的学习,体会到数形结合等思想方法,从而提高学生自身的逻辑思维和抽象思维的能力,并培养学生的严谨、规范的学习能力和辩证地分析问题、解决问题的能力.
三、结束语
在高中数学不等式的学习和高考试题中,对于不等式的考查主要是基于其作为解题工具,进而培养学生对数学问题和实际问题的解决能力和抽象化的数学思维能力.这就要求教师充分掌握数学教育理论和高考指导思想,将其充分落实到教学过程中,满足学生各方面的需求,培养学生发散思维和探索、创造能力.
参考文献
[1]张玮萍.高中数学“不等式”的教学实践与探索[D].兰州:西北师范大学,2006.
[2]刘国平.高中数学不等式必修课程教学的实践与探索[D].苏州:苏州大学,2010.
[3]郭满花.关于新课标教材《不等式选讲》的教学研究[D].长沙:湖南师范大学,2009.
[4]杨志文.新课标实验教材“不等式”一章的教学分析与建议[J].中学数学教学参考,2005(8).
(责任编辑黄桂坚)endprint