内皮祖细胞治疗缺血性脑血管病的研究进展
2014-04-04王莉莉李继梅
王莉莉,李继梅
·综述·
内皮祖细胞治疗缺血性脑血管病的研究进展
王莉莉,李继梅
内皮祖细胞(EPCs)是来源于骨髓具有分化为成熟内皮细胞特性的未成熟细胞,参与内皮细胞修复和血管新生。血管新生在缺血性脑血管病治疗中有重要作用,EPCs治疗缺血性脑血管病的实验研究已取得较好成果。本文就EPCs目前的研究概况及其在缺血性脑血管病治疗方面的研究进展进行综述。
内皮祖细胞;缺血性脑血管病;治疗
缺血性脑血管病发病早期应用重组组织型纤溶酶原激活物(recombinant tissue-type plasminogen activator,rt-PA)使血管再通,挽救缺血半暗带的脑组织,为部分患者带来了良好的预后,但3~4.5 h的溶栓时间窗严重限制了rt-PA的广泛应用。大部分急性期、亚急性期和恢复期的患者除支持和康复治疗外尚无有效的治疗方法。近20年,移植外源性干细胞和(或)神经母细胞治疗缺血性脑血管病在动物实验和临床研究中均取得了较好的前景[1,2],内皮祖细胞(endothelial progenitor cells,EPCs)因其参与内皮损伤后的修复过程和病理状态下的血管新生成为其中的研究热点[3-5]。
1 EPCs的定义特征及生理功能
EPCs于1997年从人外周血中首先分离得到,并定义为骨髓来源的具有分化为成熟内皮细胞特性的未成熟内皮细胞[6]。EPCs的来源主要有脾、骨髓、外周血和脐带血,其中骨髓中EPCs含量丰富,且实验证实其增殖能力更强[7]。EPCs表面表达造血干细胞的标记物,如CD34和CD133;亦表达内皮细胞表面标记物,如CD31、VEGFR2、vWF、CD144、Tie2、c-kit/CD117及CD62E。CD34和VEGFR2双标对EPCs的分离和鉴定具有较高的敏感性和特异性[8,9]。除细胞表面标志物外,细胞的功能如集落形成和Dil标记的乙酰化低密度脂蛋白摄取可进一步明确EPCs的表型。
EPCs不仅在胚胎时期的血管形成过程中具有重要作用,骨髓来源的外周血中的EPCs可定向迁移至血管新生部位增殖并分化成内皮细胞[10],并释放多种细胞保护因子,参与内皮细胞稳态的维持和修复。EPCs存在于血管内膜和循环血液中,并具有内皮化和取代功能不良内皮细胞的功能[11]。目前发现在高血压[12]、糖尿病[13,14]、高脂血症[15]、老龄[12]、吸烟[16]、肥胖[17]和冠状动脉病变[18]的人群中EPCs数量减少,功能异常。
正常情况下,EPCs以静息状态存在于被称为干细胞巢的骨髓微环境中,在组织缺血损伤后,动员并归巢至损伤部位发挥其修复功能[10]。这一过程的具体机制目前尚不十分清楚,其中基质衍生因子(stromal derived factor,SDF)-1/CXCR4相互作用被认为具有重要的作用[19]。正常情况下,骨髓中、外周血及组织中SDF-1处于比较低的水平,组织缺血后,上调的低氧诱导因子 1(hypoxia-inducible factor,HIF-1)激活下游因子SDF-1和血管内皮生长因子(vascular endothelial growth factor,VEGF),EPCs被动员离开骨髓进入外周血并沿着SDF-1的浓度梯度迁移至损伤部位[20,21]。VEGF促进SDF-1的表达,进一步加强这一过程。此外,SDF-1和VEGF可上调基质金属蛋白酶9(matrix metalloproteinase 9,MMP-9)表达,而后者参与了骨髓中EPCs从静止状态向增殖状态转化。MMP-9还通过诱导释放可溶性Kit配体,与EPCs细胞表面c-Kit结合,促进骨髓中EPCs动员进入外周血[22]。除SDF-1/CXCR4外,CXCR2及其配体CXCL1和CXCL7可介导EPC向损伤动脉聚集。近来有实验表明,细胞因子配体CCL5及其受体CCR5的相互作用可募集EPCs至损伤组织[19]。
2 EPCs在缺血性脑卒中后的修复作用机制
脑梗死发生后,缺血组织激活HIF-1基因,促进其下游的VEGF、Ang2、SDF-1等多种细胞因子、化学因子和趋化因子的表达上调,特别是SDF-1的趋化作用下,EPCs从骨髓动员至外周血循环,并向损伤局部迁移,发挥其缺血后神经保护、血管再生和神经再生作用[4]。在缺血发生早期,EPCs可取代受损的血管内皮细胞,重塑血脑屏障,其释放的多种营养因子亦对其他受损细胞起到保护作用。在脑梗死的恢复期,血管再生与神经保护和神经再生相辅相成,其潜在机制包括新生血管提供带有养料的血流,EPCs可分泌诸如SDF-1和VEGF等化学因子,营造适合神经再生和存活的微环境[23]。此外,内源性神经干细胞沿着新生的血管迁移至梗死灶周围,从而促进神经再生。
2.1 EPCs分化、成熟取代损伤的内皮细胞
EPCs成熟后成为内皮细胞,是循环系统重要的组成部分。EPCs不仅参与正常胚胎期血管的发育,骨髓来源的EPCs还维持着生理情况下内皮细胞的新陈代谢和病理情况下血管新生和内皮损伤后的修复[6,24,25]。新生血管内皮细胞中的26%来源于EPCs[26]。通过示踪技术,可在新生血管内皮中发现脑缺血后移植的人类脐带血来源的EPCs[6]。同样,在实验性动物内皮损伤的模型的内皮中也发现了移植的EPCs[27]。将表达绿色荧光蛋白雄性小鼠的骨髓干细胞移植到经射线灭活骨髓干细胞的雌性小鼠体内后,联合应用粒细胞集落刺激因子(granulocytecolony-stimulating factor,G-CSF)和干细胞因子(stem cell factor,SCF)可刺激EPCs从骨髓中释放,利用绿色荧光蛋白和Y染色体追踪到这些EPCs可定向归巢至大脑中动脉永久闭塞小鼠梗死灶周围,并分化成EPCs,增加血管新生[28]。一些对动物和人的研究均显示内皮细胞直接参与缺血器官血管新生过程中内皮细胞的重塑[27,29-33]。
2.2 EPCs分泌多种因子发挥作用
EPCs可分泌多种细胞因子,参与缺血后神经保护、血管再生和神经再生过程。EPCs培养基中含有大量生长因子,如VEGF、成纤维细胞生长因子(fibroblast growth factor,FGF)、血小板衍生生长因子(platelet-derived growth factor,PDGF)和胰岛素样生长因子(insulin-like growth factors,IGF)[23,34],此外 EPCs还可分泌SDF-1、G-CSF[35],这些营养因子不仅对定向归巢至损伤组织的EPCs起保护作用,对EPCs在梗死早期发挥其神经保护作用及神经血管再生同样具有重要作用[3,35,36]。VEGF直接作用于神经元起到神经保护作用,缺血再灌注后1 d,脑室内给予VEGF可减小梗死体积,改善神经功能预后,增加齿状回和室管膜下区(subventricular zone,SVZ)新生神经元的存活几率[37]。FGF为具有促进有丝分裂、血管再生和神经营养作用的生物活性多肽,在体[38]和离体[39]情况下均能对低氧和缺血损伤起到保护作用。实验证实,与静脉给予EPCs相比,术后30 h给予局灶性脑梗死小鼠EPCs来源的培养基同样可增加梗死灶周围毛细血管密度[34]。在下肢缺血的实验中,与移植EPCs相比,肌肉内注射EPCs来源的培养基同样可以促进缺血部位血管再生和肢体功能恢复[40]。
2.3 促进内源性神经干细胞迁移修复
脑梗死发生后在造成梗死区域内,大量细胞死亡的同时也触发了梗死灶周围及远隔部位修复机制。局灶性脑缺血后可引起SVZ神经干/祖细胞增殖[41],并向梗死灶周围迁移[42],这些来源于SVZ的神经母细胞迁移至梗死灶后可分化成为成熟的神经元,表达特异神经元核蛋白,并与相邻的细胞形成突触连接。由于迁移过程需要血管作为攀附物[43,44],使得这一迁移过程与血管及血管新生密切相关。同时,迁移过程中的神经干细胞表达VEGFR2[45],定向归巢至梗死灶周围的EPCs释放的VEGF也促进了这一过程。
EPCs定向归巢至缺血损伤组织后,通过释放一系列生长因子和细胞因子,如VEGF、SDF-1、IGF-1和G-CSF促进内皮细胞增殖,减少细胞凋亡,并正反馈式募集内源性EPCs至损伤部位,直接分化成内皮细胞从而参与血管新生和损伤内皮的修复[29]。因此,EPCs在缺血性卒中治疗中的获益来源于几个方面:在缺血性卒中早期,外源性和内源性EPCs可通过释放多种生长因子保护缺血造成的损伤,这些因子同时可招募更多的EPCs并促使其存活下来,通过保护神经血管单元和侧支血管减轻急性损伤。在后期,EPCs与其释放的因子促进血管再生和神经再生,在结构上和功能上重建血脑屏障、神经元网络,从而促进功能恢复。
3 EPCs在缺血性卒中的研究现状
3.1 EPCs治疗缺血性脑血管病动物实验
关于内源性EPCs参与脑血管再生的报道最早见于2002年。EPCs数量在疾病状态下通常会减少且功能不良,因此,输注外源性EPCs可加速修复过程。实验证实,缺血性卒中后输注富含EPCs的CD34阳性细胞具有促进血管新生和神经再生作用[46]。稍后研究证实输注人EPCs可减少细胞凋亡,促进神经再生和血管再生,改善神经功能恢复[4],并且给予EPCs可增加局部皮质血流,减少梗死面积,减少卒中后2 d的神经功能缺损[47]。经核磁共振证实,静脉给予大脑中动脉闭塞缺血模型大鼠脐带血来源的EPCs可定向迁移至梗死灶周围,减少梗死面积,促进内源性细胞增殖,促进神经及血管再生[48]。2型糖尿病小鼠EPCs数量减少且功能不良可能是脑微血管密度降低及脑损伤较大的原因。输注功能良好的EPCs可能通过改善血管再生减少糖尿病小鼠脑缺血损伤。EPC移植后24 h,可在脑梗死灶周围微血管找到标记的EPCs,改善长期预后[3]。在缺血性损伤的动物实验中,EPCs可促进缺血后肢的血管新生[49]。
EPCs可取代损伤部位功能不良的内皮细胞。因此,EPCs是卒中后取代或修复功能不良的内皮细胞的源泉,在缺血性卒中治疗中比较有前景的干细胞。
3.2 EPCs动员因子
G-CSF是最早发现的静脉给药具有动员EPCs至血液循环中并改善EPCs集落形成能力的药物之一。AngⅡ可通过与EPCs表面的AngⅡ1型受体相互作用诱导凋亡,通过减少AngⅡ产生或阻断AT1-R,作用于肾素血管紧张素系统的ACEI或ARB类药物在体和离体情况下均可增加EPCs的数量和功能。此外,他汀类药物具有动员EPCs促进循环中EPCs克隆形成的作用,这可能有益于心肌慢性缺血时增加心脏毛细血管密度。其分子机制可能与AKT信号通路激活和抑制TNFα诱导凋亡通路有关。应用G-CSF动员冠状动脉病患者功能性EPCs至外周血。G-CSF动员EPCs与循环中增加的嗜中性白细胞释放VEGF有关。
3.3 移植方式
目前国内外EPCs移植主要有经静脉注射、动脉注射和缺血区、脑室立体定向注射4种方式。对于EPCs的临床使用,静脉输注可能是最佳选择,但静脉输注的干细胞大部分被肺、脾、肾俘获,到达脑内的细胞数量较少[50,51]。目标动脉输注受到血流的影响,且可能造成栓塞[52]。而直接将EPCs移植至缺血灶局部的过程相对复杂且易造成局部出血和损伤,移植次数有限,移植细胞聚集在移植部位,不能广泛分布于梗死灶周围,从而影响移植细胞发挥作用[53]。值得注意的是,经鼻途径给予干细胞不通过血脑屏障,避免以上3种移植方式的弊端,且在骨髓间充质干细胞治疗缺血性脑血管病的动物实验中取得了良好的结果[54],可能为EPCs移植治疗缺血性脑血管病提供新的移植途径。
3.4 移植时机
对于给予EPCs的时机,目前研究有限。在急性期重建血脑屏障结构和功能的完整性,阻止有害物质进入脑组织间质,可能成为阻断脑缺血后病理变化的关键因素,为EPCs早期治疗缺血性卒中提供了理论依据。基于EPCs可释放细胞因子对内皮细胞和神经元起到保护作用的考虑,早期给予EPCs可能效果更佳。但卒中早期炎症,自由基和细胞因子介导的毒性反应可能限制了移植的EPCs的功能和存活率[55,56]。脑梗死亚急性期患者的EPCs较急性期患者的EPCs具有更强的血管形成能力[57]。尚没有证据表明在亚急性期移植自体EPCs具有更好的效果。
3.5 临床试验
实验证实,在高血压、高血脂、糖尿病及动脉硬化等卒中危险因素患者中循环中EPCs水平较低。而外周血中EPCs的数量可作为预报内皮功能不良、心、脑血管事件的重要生物学标记物。目前应用EPCs治疗缺血性脑血管病的临床研究十分有限,且结论不一。有实验显示急性脑卒中可引起外周血中EPCs一过性升高[58],且其数量与缺血损伤的严重程度呈负相关,卒中后的第1周内高水平的早期EPCs与预后呈正相关[59,60]。缺血性卒中发生后7 d,外周血中EPCs水平达到最高,30 d后恢复到基线水平[61]。因此,EPCs不仅可作为卒中的生物标记物,也可能是缺血性卒中治疗的新策略。
4 展望
脑缺血急性期保护受损细胞、重建血脑屏障、慢性期血管新生、神经再生是减轻缺血损伤,改善神经功能预后的关键,而EPCs的血管新生能力毋庸置疑。在这一过程中可能存在的作用使其在缺血性脑血管病的治疗上具有巨大的潜在应用价值和广阔的应用前景。在动物实验中取得的令人振奋的结果应用到临床仍有很长的路要走,如何改进治疗方案以获得最佳治疗效果值得深入研究。此外,以EPCs为靶点进行缺血性脑血管病的预防是否存在意义可能成为未来的研究领域之一。
[1]Misra V,Ritchiemu MM,Stone LL,et al. Stem cell therapy in ischemic stroke:role of IV and intra-arterial therapy[J].Neurology,2012, 79:S207-212.
[2]Wei L,Fraser JL,Lu ZY,et al.Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats [J].Neurobiol Dis,2012,46:635-645.
[3]Fan Y,Shen F,Frenzel T,et al.Endothelial progenitor cell transplantation improves long-term stroke outcome in mice [J].Ann Neurol,2010,67:488-497.
[4]Moubarik C,Guillet B,Yousser B,et al. Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke[J]. Stem Cell Rev,2011,7:208-220.
[5]Chen J,Chen S,Chen Y,et al.Circulating endothelial progenitor cells and cellular membrane microparticles in db/db diabetic mouse: possible implications in cerebral ischemic damage[J].Am J Physiol Endocrinol Metab,2011, 301:E62-71.
[6]Asahara T,Murohara T,Sullivan A,et al. Isolation of putative progenitor endothelial cells for angiogenesis[J].Science,1997,275:964-967.
[7]Isner JM,Kalka C,kawamoto A,et al.Bone marrow as a source of endothelial cells for natural and iatrogenic vascular repair[J].Ann N Y Acad Sci,2001,953:75-84.
[8]Yang J,Li M,Kamei N,et al.CD34+cells represent highly functional endothelial progenitor cells in murine bone marrow[J].PLoS One,2011, 6:e20219.
[9]Fadini GP,Losordo D,Dimmeler S.Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use[J].Circ Res,2012,110:624-637.
[10]Madeddu P,Emanueli C,Pelosi E,et al. Transplantation of low dose CD34+KDR+cells promotes vascular and muscular regeneration in ischemic limbs [J].FASEB J,2004,18: 1737-1739.
[11]Masuda H,Asahara T.Post-natal endothelial progenitor cells for neovascularization in tissue regeneration[J].Cardiovasc Res,2003,58: 390-398.
[12]Umemura T,Soga J,Hidaka T,et al.Aging and hypertension are independent risk factors for reduced number of circulating endothelial progenitor cells[J].Am J Hypertens,2008,21: 1203-1209.
[13]Fadini GP,Miorin M,Facco M,et al.Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus[J].J Am Coll Cardiol,2005,45: 1449-1457.
[14]Loomans CJ,de Koning EJ,Staal FJ,et al. Endothelial progenitor cell dysfunction:a novel concept in the pathogenesis of vascular complications of type 1 diabetes[J].Diabetes,2004,53: 195-199.
[15]Chen JZ,Zhang FR,Tao QM,et al.Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia [J].Clin Sci (Lond),2004,107: 273-280.
[16]Kondo T,Havashi M,Takeshita K,et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers[J].Arterioscler Thromb Vasc Biol, 2004,24:1442-1447.
[17]Müller-Ehmsen J,Braun D,Schneider T,et al.Decreased number of circulating progenitor cells in obesity:beneficial effects of weight reduction[J].Eur Heart J,2008,29:1560-1568.
[18]Kunz GA,Liang G,Cuculi F,et al.Circulating endothelial progenitor cells predict coronary artery disease severity[J].Am Heart J,2006, 152:190-195.
[19]Tilling L,Chowienczyk P,Clapp B.Progenitors in motion:mechanisms of mobilization of endothelial progenitor cells[J].Br J Clin Pharmacol,2009,68:484-492.
[20]Ceradini DJ,Kulkami AR,Callaghan MT, et al.Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J].Nat Med,2004,10:858-864.
[21]Grunewald M,Avraham I,Dor Y,et al. VEGF-induced adult neovascularization:recruitment,retention,and role of accessory cells[J]. Cell,2006,124:175-189.
[22]Heissig B,Hattori K,Dias S,et al.Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand[J].Cell,2002,109:625-637.
[23]Beck H,Plate KH.Angiogenesis after cerebral ischemia[J].Acta Neuropathol,2009,117: 481-496.
[24]Asahara T,Masude H,Takahashi T,et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization[J].Circ Res,1999,85:221-228.
[25]Hristov M,Weber C.Endothelial progenitor cells:characterization,pathophysiology,and possible clinical relevance[J].J Cell Mol Med,2004, 8:498-508.
[26]Murayama T,Tepper QM,Silver M,et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo [J].Exp Hematol,2002,30:967-972.
[27]Griese DP,Ehsan A,Melo LG,et al.Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts:implications for cell-based vascular therapy[J].Circulation,2003,108:2710-2715.
[28]Toth ZE,Leker RR,Shahar T,et al.The combination of granulocyte colony-stimulating factor and stem cell factor significantly increases the number of bone marrow-derived endothelial cells in brains of mice following cerebral ischemia[J].Blood,2008,111:5544-5552.
[29]Ishida Y,Klmura A,Kuninaka Y,et al.Pivotal role of the CCL5/CCR5 interaction for recruitment of endothelial progenitor cells in mouse wound healing[J].J Clin Invest,2012, 122:711-721.
[30]Peichev M,Naiyer AJ,Pereira D,et al.Expression of VEGFR-2 and AC133 by circulating human CD34(+)cells identifies a population of functional endothelial precursors[J].Blood,2000, 95:952-958.
[31]Murohara T,Ikeda H,Duan J,et al.Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization[J].J Clin Invest,2000,105:1527-1536.
[32]McCarty JH.Cell adhesion and signaling networks in brain neurovascular units[J].Curr Opin Hematol,2009,16:209-214.
[33]Lapergue B,Mohammad A,Shuaib A.Endothelial progenitor cells and cerebrovascular diseases[J].Prog Neurobiol,2007,83:349-362.
[34]Rosell A,Morancho A,Navarro-Sobrino M, et al.Factors secreted by endothelial progenitor cells enhance neurorepair responses after cerebral ischemia in mice[J].PLoS One,2013,8:e73244.
[35]Urbich C,Aicher A,Heeschen C,et al.Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells[J].J Mol Cell Cardiol,2005,39:733-742.
[36]Hur J,Yoon CH,Kim HS,et al.Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis[J].Arterioscler Thromb Vasc Biol,2004, 24:288-293.
[37]Unemori EN,Bouhana KS,Werb Z.Vectorial secretion of extracellular matrix proteins, matrix-degrading proteinases,and tissue inhibitor of metalloproteinases by endothelial cells[J].J Biol Chem,1990,265:445-451.
[38]Tanaka R,Mirasaka Y,Yada K,et al.Basic fibroblast growth factor increases regional cerebral blood flow and reduces infarct size after experimental ischemia in a rat model[J].Stroke, 1995,26:2154-2159.
[39]Maiese K,Boniece I,DeMeo D,et al.Peptide growth factors protect against ischemia in culture by preventing nitric oxide toxicity[J].J Neurosci,1993,13:3034-3040.
[40]Di Santo S,Yang Z,Wvier von Ballmoos M,et al.Novel cell-free strategy for therapeutic angiogenesis:in vitro generated conditioned medium can replace progenitor cell transplantation[J].PLoS One,2009,4:e5643.
[41]Tonchev AB,Yamashima T,Sawamoto K, et al.Enhanced proliferation of progenitor cells in the subventricular zone and limited neuronal production in the striatum and neocortex of adult macaque monkeys after global cerebral ischemia [J].J Neurosci Res,2005,81:776-788.
[42]Zhang RL,le Tourneau Y,Greog SR,et al. Neuroblast division during migration toward the ischemic striatum:a study of dynamic migratory and proliferative characteristics of neuroblasts from the subventricular zone[J].J Neurosci, 2007,27:3157-3162.
[43]Ohab JJ,Fleming S,Blesch A,et al.A neurovascular niche for neurogenesis after stroke[J]. J Neurosci,2006,26:13007-13016.
[44]Thored P,Wood J,Arvidsson A,et al. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke[J].Stroke, 2007,38:3032-3039.
[45]Li WL,Yu SP,Ogle ME,et al.Enhanced neurogenesis and cell migration following focal ischemia and peripheral stimulation in mice[J]. Dev Neurobiol,2008,68:1474-1486.
[46]Shyu WC,Lin SZ,Chiang MF,et al.Intracerebral peripheral blood stem cell(CD34+)implantation induces neuroplasticity by enhancing beta1 integrin-mediated angiogenesis in chronic stroke rats[J].J Neurosci,2006,26:3444-3453.
[47]Ohta T,Kikuta K,Imamura H,et al.Administration of ex vivo-expanded bone marrow-derived endothelial progenitor cells attenuates focal cerebral ischemia-reperfusion injury in rats[J].Neurosurgery,2006,59:679-686.
[48]Iskander A,Knight RA,Zhang ZG,et al.Intravenous administration of human umbilical cord blood-derived AC133+endothelial progenitor cells in rat stroke model reduces infarct volume:magnetic resonance imaging and histological findings[J].Stem Cells Transl Med,2013,2: 703-714.
[49]Ingram DA,Mead LE,Moore DB,et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells[J].Blood, 2005,105:2783-2786.
[50]Kraitchman DL,Tatsumi M,Gilson WD,et al.Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction[J]. Circulation,2005,112:1451-1461.
[51]Hauger O,frost EE,yan Heeswiik R,et al. MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy[J].Radiology,2006,238: 200-210.
[52]Walczak P,Zhang J,Gilad AA,et al.Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia[J].Stroke,2008,39:1569-1574.
[53]Nunes MC,Rov NS,Keyoung HM,et al.I-dentification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain[J].Nat Med, 2003,9:439-447.
[54]Wei N,Yu SP,Gu X,et al.Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice[J].Cell Transplant,2013,22: 977-991.
[55]Woodruff TM,Thundyil J,Tang SC,et al. Pathophysiology,treatment,and animal and cellular models of human ischemic stroke[J].Mol Neurodegener,2011,6:11.
[56]Locatelli F,Bersano,Ballabio E,et al.Stem cell therapy in stroke[J].Cell Mol Life Sci,2009, 66:757-772.
[57]Navarro-Sobrino M, Rosell A, Hernandez-Guillamon M,et al.Mobilization,endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke[J].Microvasc Res,2010,80:317-323.
[58]Zhou WJ,Zhu DL,Yang GY,et al.Circulating endothelial progenitor cells in Chinese patients with acute stroke[J].Hypertens Res,2009, 32:306-310.
[59]Bogoslovsky T,Chaudhry A,Latour L,et al.Endothelial progenitor cells correlate with lesion volume and growth in acute stroke[J]. Neurology,2010,75:2059-2062.
[60]BogoslovskyT,Spatz M,ChaudhryA,et al. Stromal-derived factor-1[alpha]correlates with circulating endothelial progenitor cells and with acute lesion volume in stroke patients[J].Stroke, 2011,42:618-625.
[61]Taguchi A,Matsuyama T,Moriwaki H,et al.Circulating CD34-positive cells provide an index of cerebrovascular function[J].Circulation, 2004,109:2972-2975
(本文编辑:唐颖馨)
R741;R743
A DOI 10.3870/sjsscj.2014.05.0019
首都医科大学附属北京友谊医院神经内科北京100050
国家自然科学基金(No.81350012)
2014-04-26
李继梅jimeili2002@163.com