APP下载

大气细颗粒物与糖尿病

2014-03-22谭明典邓晓蓓张芳丁文军

生态毒理学报 2014年3期
关键词:颗粒物氧化应激胰岛素

谭明典,邓晓蓓,张芳,丁文军

中国科学院大学生命科学学院 环境与健康实验室, 北京 100049

我国现已成为全球糖尿病人数最多的地区[1],成年人发病率达到了9.7%[2]。其中2型糖尿病占到90%以上。目前,1型糖尿病的发病与自身免疫紊乱、遗传因素、环境因素等其他因素相关。诱发2型糖尿病的原因主要有:遗传因素、环境因素、肥胖、高糖和脂毒性、炎症反应和氧化应激等,导致β细胞功能紊乱和胰岛素抵抗[3]。

我国大气颗粒物污染对健康的影响已日益受到公众关注和政府重视。大量流行病学和临床研究表明,大气细颗粒物(PM2.5,空气动力学直径<2.5 μm的大气颗粒物)污染严重危害人体健康,导致呼吸、心血管、内分泌等系统的发病率上升。并且,细颗粒物的组成成分和浓度与疾病发生密切相关[4-8]。毒理学研究也显示,颗粒物中金属元素、脂多糖、多环芳烃、醌类化合物等组分诱导体内活性氧(ROS)生成[9]和炎症反应[10, 11],引起组织和细胞的氧化损伤[9, 12, 13]和内质网(ER)应激,激活细胞转录因子参与一系列信号通路,引起细胞凋亡和坏死等生物效应及疾病[9]。目前发现,大气颗粒物污染也与糖尿病并发症的发病率相关[14]。

1 细颗粒物与糖尿病

流行病学调查结果显示,长期PM2.5暴露可诱发糖尿病。Sun等发现北京市PM2.5浓度升高与2型糖尿病发病率增加呈正相关[15]。Chen等的研究结果也表明,PM2.5年平均浓度每升高10 μg·m-3,2型糖尿病发病的危险度将增加1.11[16]。空气污染与糖尿病急性并发症、昏迷和酮症酸中毒相关[14]。Pearson等发现,PM2.5日平均浓度每增加10 μg·m-3,2型糖尿病发病率增加1%[17]。短期亚急性暴露低浓度PM2.5导致人体胰岛素抵抗[18]。

糖尿病、高血压患者和肥胖人群暴露于高浓度PM2.5后,机体的C-反应蛋白(CRP)、白介素-6(IL-6)、白细胞数量等炎症水平明显高于正常人群[19]。2型糖尿病患者外周血中血管内皮细胞粘附因子(VCAM-1)的浓度随着PM暴露水平增加而升高[20]。PM2.5日平均浓度每增加10 μg·m-3,2型糖尿病患者血液中IL-6、TNF-α水平分别升高20.2%和13.1%[19]。

动物实验研究也发现,肥胖ICR小鼠暴露于15 μg·m-3PM2.510周后,肥胖小鼠的血糖水平、脂肪组织炎症因子(TNF-ɑ、Nos2、IL-6)均明显升高,抗炎症因子(IL-10、Mgl-1、PPARγ)的表达水平下调,并出现胰岛素抵抗和内脏脂肪增多症状[21]。近期研究表明,当用PM2.5暴露处理C57BL/6小鼠10周后,小鼠肝细胞的c-jun氨基末端激酶(JNK)、核因子κB(NF-κB)、Toll样受体4(TLR4)等炎症信号通路激活,并出现非酒精性脂肪肝、肝脏葡萄糖代谢紊乱以及胰岛素抵抗等症状[8, 22, 23]。PM2.5暴露明显引起高脂饲料(HFD)组小鼠胰岛素和葡萄糖代谢失衡和炎症反应[15],也引起糖尿病小鼠骨骼肌中ROS产物增加,并诱发胰岛素抵抗[24]。此外,ApoE-/-小鼠长期暴露PM2.5和过渡金属元素Ni后,出现空腹血糖升高、线粒体损伤、炎症反应和胰岛素抵抗[25]。PM2.5长期暴露导致小鼠白色脂肪组织内脂滴的生成和沉积[26],引起受体识别的低密度脂蛋白氧化和脂质受体功能紊乱[18, 27]。

2 致病作用机制

大气颗粒物导致的健康损害主要由细胞氧化损伤和炎症反应所引起的。大气颗粒物诱导的氧化应激,巨噬细胞分化[28]、DNA和线粒体损伤[23, 29, 30],抑制肝脏糖代谢相关酶活性,促进炎症因子释放[31, 32],上调与炎症应答通路[33, 34]相关的JNK、NF-κB和TLR4表达水平。有研究发现,炎症应答通路与胰岛素抵抗之间密切相关[35]。此外,PM2.5降低肝糖原合成水平,破坏血糖和胰岛素稳态,抑制胰岛素受体底物-1(IRS-1)介导信号通路的激活,下调肝脏PPARγ和PPARα蛋白的表达水平[22],并引起免疫功能紊乱或细胞毒性[22, 36-38]。大气颗粒物介导的炎症反应激活JNK通路,引起细胞功能紊乱或细胞凋亡。同时,炎症因子进一步引起ROS水平升高。大气颗粒物中的多环芳烃化合物(PAHs)可以持续激活DNA损伤的信号通路[39]。当用颗粒物中提取的含碳有机物处理HepG2细胞后,细胞8-羟基脱氧鸟苷(8-OHdG)和NF-κB p65蛋白水平均升高,该结果与ROS诱导的DNA损伤相关[40]。下面主要从氧化应激、炎症因子、糖脂毒性和其他方面探讨大气颗粒物的致病机制。

2.1 氧化应激对胰岛β细胞功能的影响

研究表明,氧化应激激活Iκ激酶β(IKKβ)后引起NF-κB水平升高[58, 59],诱导β细胞凋亡。此外,氧化应激还激活胰岛β细胞的JNK、p38丝裂原活化蛋白激酶(p38 MAPK)和蛋白激酶C(PKC)[48]。P38 MPAK通过蛋白激酶D(PKD)抑制PKD1磷酸化,降低胰岛素的分泌水平,进一步调控β细胞的存活率和胰岛素的分泌。研究表明,P38δ敲除小鼠的葡萄糖耐量和胰岛β细胞分泌胰岛素水平升高,高脂饲料诱导的胰岛素抵抗明显改善,氧化应激诱导的β细胞凋亡水平降低[60]。以上也表明,P38δ是调控葡萄糖稳态平衡的重要调节因素之一。

核因子E2相关因子2(Nrf2)与抗氧化反应元件(antioxidant responsive element, ARE)结合后,调节抗氧化蛋白的表达[61, 62]。Nrf2/ARE信号通路已作为重要的抗氧化应激信号通路,在调节细胞氧化还原平衡中起到重要作用。此外,Nrf2参与过氧化物酶体增殖物激活受体γ(PPARγ)和PI3K/Akt调节的抗氧化酶活性[63]。动物实验也发现,Nrf2对Nrf2-KO小鼠的肥胖、胰岛素抵抗和葡萄糖耐量方面具有一定的保护作用[64]

FoxO1是β细胞中表达的FoxO家族主要的转录因子,也是生长因子信号的主要介导物,调控β细胞增殖和氧化应激应答[65, 66]、胰岛素分泌水平,抑制由游离脂肪酸(FFAs)激活的葡萄糖代谢[67-69]。此外,激活β细胞PI3K/Akt信号可以抑制FoxO活性[70, 71],引起胰高血糖素样肽(GLP-1)介导的细胞增殖和抗氧化水平升高。

2.2 炎症因子对胰岛β细胞功能的影响

炎症反应是诱导胰岛素抵抗的原因之一[35]。PM2.5暴露降低与高密度脂蛋白(HDL-c)相关的抗炎能力[72],导致炎症反应增强。在细颗粒物长期暴露下,在各时间点暴露组小鼠的血糖浓度均明显升高,葡萄糖耐量受损,肝脏、肌肉和脂肪组织胰岛素抵抗,以及系统性炎症和肺组织中招募巨噬细胞[73]。巨噬细胞通过分泌的细胞因子(如IL-1、IFN-γ和TNF-α等)激活NF-κB和STAT-1,尤其是IL-1β激活NF-κB可诱导胰岛β细胞凋亡[74]、NO和趋化因子产生,造成内质网损伤[75]。IL-1β持续激活JNK后,损伤胰岛β细胞[76, 77],抑制JNK通路可降低β细胞的氧化损伤[78, 79]。此外,游离脂肪酸(FFA)也可通过氧化/内质网应激或PKC[80, 81]直接激活IKKβ和JNK;氧化应激也可能激活PKC,且PKC也能通过NADPH氧化酶诱导氧化应激[82]。另有研究显示,TLR2缺陷性可以保护高脂食物诱导的β细胞功能紊乱[83];炎症激酶和PKC激活诱导β细胞的功能紊乱和凋亡,影响β细胞的胰岛素信号通路[84],而且PM2.5暴露引起Akt磷酸化的表达下降[21],最终引起胰岛素抵抗。

2.3 糖脂毒性

PM2.5暴露引起机体血糖水平升高和脂质堆积[21, 73],高血糖和高脂进一步诱导氧化应激,导致细胞内ROS水平升高[85]。而且,脂质也可引起血液循环系统相关氧化应激因子水平的增加[86]。长期高脂和高糖减少胰岛素分泌量,导致胰岛细胞功能紊乱[87]。研究发现,用高糖(11.1 mmol·L-1)培养仓鼠胰岛瘤HIT-T15细胞6个月后,细胞的胰岛素mRNA表达水平下降,胰岛素分泌量降低。相反,在低糖(0.8 mmol·L-1)条件下,细胞的胰岛素mRNA表达和胰岛素分泌量胰岛素均维持于正常状态[88]。另有研究发现,2型糖尿病患者的胰岛β细胞凋亡水平明显升高[89]。在糖毒性中,MafA是Maf bZIP(basic region leucine zipper)家族的转录因子之一,长期高糖(11.1mmol·L-1)培养的HIT-T15细胞的MafA结合和转录功能降低,导致胰岛素基因表达、MafA和PDX-1蛋白水平降低[90]。重组HIT-T15细胞内PDX-1的cDNA可部分增加高糖培养细胞的胰岛素启动子活性[91]。而且,抗氧化剂NAC升高高糖培养HIT-T15细胞中MafA蛋白的表达水平[90]。

在高脂高糖条件下,β细胞易发生凋亡,该作用可能与Bax、caspase-2、NO和UCP-2(Uncoupling protein 2)水平升高相关[92, 93]。游离脂肪酸通过JNK激活和IRS-1丝氨酸磷酸化,影响ER的钙离子调控[94],抑制胰岛素信号通路,调节氧化调控蛋白150(ORP150,保护细胞免受ER应激损伤)的水平。高浓度FFAs引起胰岛素敏感性降低[95]。大鼠注射葡萄糖和脂肪乳剂后,其胰岛素基因的表达水平降低[96]。当FFAs水平下降时,胰岛素的分泌水平升高[97, 98]。

2.4 其 他

成人发病型糖尿病(MODY)由pdx-1基因变异所引起[99, 100],PDX-1在胰岛β细胞发育和功能中起到重要作用[49, 101]。PDX-1下调严重影响胰岛素生成,导致β细胞功能紊乱和糖尿病[102]。MafA在葡萄糖调节胰岛素基因表达和介导其他基因(如PDX-1)表达中具有重要作用[49, 103, 104]。FoxO1和PDX-1与MafA启动子结合后,介导MafA转录[49],β细胞中,脂质和前炎症因子下调MafA和胰岛素基因的表达[101, 105-107],用腺病毒转染PDX-1和MafA可明显增加内源性胰岛素mRNA水平约93%[108]。因此,MafA可能是治疗β细胞紊乱的潜在靶点[101]。

总体而言,PM2.5诱导的氧化应激和炎症反应在糖尿病的发生发展中具有一定的生物学作用(图1)。

图1 PM2.5诱导的氧化应激在糖尿病发生发展的作用机制ARE:抗氧化反应元件,GSH:谷胱甘肽,IKK-β:Iκ激酶β,JNK:氨基末端激酶,NF-κB:核因子κB,Nrf2:核因子E2相关因子2,p38 MAPK:p38丝裂原活化蛋白激酶,PDX-1:胰腺十二指肠同源异型盒1,PKD:蛋白激酶D,PM2.5:细颗粒物,ROS:活性氧,TLR4:Toll样受体4 Fig. 1 The mechanesim of PM2.5-induced oxidative stress on development of diabetes mellitusARE: Antioxidant responsive element, GSH: Glutathione, IKK-β: Inhibitor of nuclear factor kappa-B kinase, JNK: c-Jun N-terminal kinases, NF-κB: Nuclear factor kappa B, Nrf2: Nuclea factor erythroid-2-related factor 2, p38 MAPK: P38 Mitogen-activated protein kinases, PDX-1: Pancreatic and duodenal homeobox 1(Insulin promoter factor 1), PKD: Protein kinase D, PM2.5: Fine particulate matter, ROS: Reactive oxygen species, TLR4: Toll-like receptor 4

3 研究展望

目前,有关大气细颗粒物组成成分(金属元素、离子和有机化合物等)引起胰腺β细胞损伤的研究报道甚少,其生物学作用机制有待于深入研究。

参考文献:

[1] Scully T. Diabetes in numbers [J]. Nature, 2012, 485(7398): S2-S3

[2] Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in china [J]. The New England Journal of Medicine, 2010, 362(12): 1090-1101

[3] 许曼音,陆广华,陈名道. 糖尿病学 [M]. 上海: 上海科学技术出版社, 2010

[4] Hankey S, Marshall J D, Brauer M. Health impacts of the built environment: Within-urban variability in physical inactivity, air pollution, and ischemic heart disease mortality [J]. Environmental Health Perspectives, 2012, 120(2): 247-253

[5] 赵鑫, 林刚, 杜莹. 大气颗粒物污染对儿童健康的影响[J]. 中国学校卫生, 2008, 29(11): 1067-1069

[6] 钱孝琳, 阚海东, 宋伟民, 等. 大气细颗粒物污染与居民每日死亡关系的meta分析[J]. 环境与健康杂志, 2005, 22(4): 246-248

Qian X L, Kan H D, Song W M, et al. Meta-analysis of association between air fine particulate matter and daily mortality [J]. The Journal of Environment and Healthy, 2005, 22(4): 246-248 (in Chinese)

[7] Pope C A, Burnett R T, Thun M J, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution [J]. The Journal of the American Medical Association, 2002, 287(9): 1132-1141

[8] Veras M M, Damaceno-Rodrigues N R, Guimarães Silva R M, et al. Chronic exposure to fine particulate matter emitted by traffic affects reproductive and fetal outcomes in mice [J]. Environmental Research, 2009, 109(5): 536-543

[9] Li N, Xia T, Nel A E. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles [J]. Free Radical Biology & Medicine, 2008, 44(9): 1689-1699

[11] Gerlofs-Nijland M E, Rummelhard M, Boere A J, et al. Particle induced toxicity in relation to transition metal and polycyclic aromatic hydrocarbon contents [J]. Environmental Science & Technology, 2009, 43(13): 4729-4736

[12] Ercal N, Gurer-Orhan H, Aykin-Burns N. Toxic metals and oxidative stress part I: Mechanisms involved in metal-induced oxidative damage [J]. Current Topics in Medicinal Chemistry, 2001, 1(6): 529-539

[13] Li N, Hao M, Phalen R F, et al. Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects [J]. Clinical Immunology (Orlando, Fla), 2003, 109(3): 250-265

[14] Dales R E, Cakmak S, Vidal C B, et al. Air pollution and hospitalization for acute complications of diabetes in Chile [J]. Environment International, 2012, 46: 1-5

[15] Sun Z, Mukherjee B, Brook R D, et al. Air-pollution and cardiometabolic diseases (AIRCMD): A prospective study investigating the impact of air pollution exposure and propensity for type II diabetes [J]. The Science of the Total Environment, 2013, 448: 72-78

[16] Chen H, Burnett R T, Kwong J C, et al. Risk of incident diabetes in relation to long-term exposure to fine particulate matter in ontario, Canada [J]. Environmental Health Perspectives, 2013, 121(7): 804-810

[17] Pearson J F, Bachireddy C, Shyamprasad S, et al. Association between fine particulate matter and diabetes prevalence in the U. S. [J]. Diabetes Care, 2010, 33(10): 2196-2201

[18] Brook R D, Xu X, Bard R L, et al. Reduced metabolic insulin sensitivity following sub-acute exposures to low levels of ambient fine particulate matter air pollution [J]. The Science of the Total Environment, 2013, 448: 66-71

[19] Schneider A, Neas L M, Graff D W, et al. Association of cardiac and vascular changes with ambient PM2.5in diabetic individuals [J]. Particle and Fibre Toxicology, 2010, 7: 14

[20] O'Neill M S, Veves A, Sarnat J A, et al. Air pollution and inflammation in type 2 diabetes: A mechanism for susceptibility [J]. Occupational and Environmental Medicine, 2007, 64(6): 373-379

[21] Sun Q, Yue P, Deiuliis J A, et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity [J]. Circulation, 2009, 119(4): 538-546

[22] Zheng Z, Xu X, Zhang X, et al. Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model [J]. Journal of Hepatology, 2013, 58(1): 148-154

[23] Danielsen P H, Moller P, Jensen K A, et al. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines [J]. Chemical Research in Toxicology, 2011, 24(2): 168-184

[24] Bonnard C, Durand A, Peyrol S, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice [J]. The Journal of Clinical Investigation, 2008, 118(2): 789-800

[25] Xu X, Rao X, Wang T Y, et al. Effect of co-exposure to nickel and particulate matter on insulin resistance and mitochondrial dysfunction in a mouse model [J]. Particle and Fibre Toxicology, 2012, 9: 40

[26] Mendez R, Zheng Z, Fan Z, et al. Exposure to fine airborne particulate matter induces macrophage infiltration, unfolded protein response, and lipid deposition in white adipose tissue [J]. American Journal of Translational Research, 2013, 5(2): 224-234

[27] Manzano-Leon N, Mas-Oliva J, Sevilla-Tapia L, et al. Particulate matter promotes in vitro receptor-recognizable low-density lipoprotein oxidation and dysfunction of lipid receptors [J]. Journal of Biochemical and Molecular Toxicology, 2013, 27(1): 69-76

[28] Williams K M, Franzi L M, Last J A. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung [J]. Toxicology and Applied Pharmacology, 2013, 266(1): 48-55

[29] Hanzalova K, Rossner P, Sram R J. Oxidative damage induced by carcinogenic polycyclic aromatic hydrocarbons and organic extracts from urban air particulate matter [J]. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2010, 696(2): 114-121

[30] Sanchez-Perez Y, Chirino Y I, Osornio-Vargas A R, et al. DNA damage response of A549 cells treated with particulate matter (PM10) of urban air pollutants [J]. Cancer Letters, 2009, 278(2): 192-200

[31] Xu X, Deng F, Guo X, et al. Association of systemic inflammation with marked changes in particulate air pollution in beijing in 2008 [J]. Toxicology Letters, 2012, 212(2): 147-156

[32] Hirota J A, Hirota S A, Warner S M, et al. The airway epithelium nucleotide-binding domain and leucine-rich repeat protein 3 inflammasome is activated by urban particulate matter [J]. Journal of Allergy and Clinical Immunology, 2012, 129(4): 1116-1125.e1116

[33] Danielsen P H, Loft S, Jacobsen N R, et al. Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter [J]. Toxicological Sciences, 2010, 118(2): 574-585

[34] Park E J, Roh J, Kim Y, et al. PM2.5collected in a residential area induced Th1-type inflammatory responses with oxidative stress in mice [J]. Environmental Research, 2011, 111(3): 348-355

[35] Johnson A M, Olefsky J M. The origins and drivers of insulin resistance [J]. Cell, 2013, 152(4): 673-684

[36] Salim S Y, Kaplan G G, Barkema H, et al. early exposure to airborne particulate matter alters intestinal immune function and bacterial handling in IL-10 deficient mice [J]. Gastroenterology, 2013, 144(5, Supplement 1): S100-S101

[37] Tapanainen M, Jalava P I, Mäki-Paakkanen J, et al. In vitro immunotoxic and genotoxic activities of particles emitted from two different small-scale wood combustion appliances [J]. Atmospheric Environment, 2011, 45(40): 7546-7554

[38] Hong X, Liu C, Chen X, et al. Maternal exposure to airborne particulate matter causes postnatal immunological dysfunction in mice offspring [J]. Toxicology, 2013, 306: 59-67

[39] Jarvis I W H, Bergvall C, Bottai M, et al. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter [J]. Toxicology and Applied Pharmacology, 2013, 266(3): 408-418

[40] Jiang L P, Dai H, Sun Q H, et al. Ambient particulate matter on DNA damage in HepG2 cells [J]. Toxicology and Industrial Health, 2011, 27(1): 87-95

[41] Kaneto H, Xu G, Song K H, et al. Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress [J]. The Journal of Biological Chemistry, 2001, 276(33): 31099-31104

[42] Gorogawa S, Kajimoto Y, Umayahara Y, et al. Probucol preserves pancreatic beta-cell function through reduction of oxidative stress in type 2 diabetes [J]. Diabetes Research and Clinical Practice, 2002, 57(1): 1-10

[43] Sakai K, Matsumoto K, Nishikawa T, et al. Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic beta-cells [J]. Biochemical and Biophysical Research Communications, 2003, 300(1): 216-222

[44] Evans J L, Goldfine I D, Maddux B A, et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? [J]. Diabetes, 2003, 52(1): 1-8

[45] Kaneto H, Fujii J, Myint T, et al. Reducing sugars trigger oxidative modification and apoptosis in pancreatic beta-cells by provoking oxidative stress through the glycation reaction [J]. The Biochemical Journal, 1996, 320 (Pt3): 855-863

[46] Matsuoka T, Kajimoto Y, Watada H, et al. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in hit cells [J]. The Journal of Clinical Investigation, 1997, 99(1): 144-150

[47] Nishikawa T, Edelstein D, Du X L, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage [J]. Nature, 2000, 404(6779): 787-790

[48] Kaneto H, Xu G, Fujii N, et al. Involvement of c-jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression [J]. The Journal of Biological Chemistry, 2002, 277(33): 30010-30018

[49] Shao S, Fang Z, Yu X, et al. Transcription factors involved in glucose-stimulated insulin secretion of pancreatic beta cells [J]. Biochemical and Biophysical Research Communications, 2009, 384(4): 401-404

[50] Bonora E. Protection of pancreatic beta-cells: Is it feasible? [J]. Nutrition, Metabolism, and Cardiovascular Diseases : NMCD, 2008, 18(1): 74-83

[51] Kawamori D, Kajimoto Y, Kaneto H, et al. Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-jun NH(2)-terminal kinase [J]. Diabetes, 2003, 52(12): 2896-2904

[52] Robertson R, Zhou H, Zhang T, et al. Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes [J]. Cell Biochemistry and Biophysics, 2007, 48(2-3): 139-146

[53] Robertson R P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes [J]. The Journal of Biological Chemistry, 2004, 279(41): 42351-42354

[54] Rehman A, Nourooz-Zadeh J, Moller W, et al. Increased oxidative damage to all DNA bases in patients with type ii diabetes mellitus [J]. FEBS Letters, 1999, 448(1): 120-122

[55] Sakuraba H, Mizukami H, Yagihashi N, et al. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type ii diabetic patients [J]. Diabetologia, 2002, 45(1): 85-96

[56] Evans J L, Goldfine I D, Maddux B A, et al. Oxidative stress and stress-activated signaling pathways: A unifying hypothesis of type 2 diabetes [J]. Endocrine Reviews, 2002, 23(5): 599-622

[57] Robertson R P, Harmon J, Tran P O, et al. Glucose toxicity in beta-cells: Type 2 diabetes, good radicals gone bad, and the glutathione connection [J]. Diabetes, 2003, 52(3): 581-587

[58] Li N, Wu X, Holzer R G, et al. Loss of acinar cell ikkalpha triggers spontaneous pancreatitis in mice [J]. The Journal of Clinical Investigation, 2013, 123(5): 2231-2243

[59] Hacker H, Karin M. Regulation and function of ikk and ikk-related kinases [J]. Science's STKE : Signal Transduction Knowledge Environment, 2006, 2006(357): re13

[60] Sumara G, Formentini I, Collins S, et al. Regulation of PKD by the mapk p38delta in insulin secretion and glucose homeostasis [J]. Cell, 2009, 136(2): 235-248

[61] Pi J, Qu W, Reece J M, et al. Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: Involvement of hydrogen peroxide [J]. Experimental Cell Research, 2003, 290(2): 234-245

[62] Nguyen T, Sherratt P J, Pickett C B. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element [J]. Annual Review of Pharmacology and Toxicology, 2003, 43: 233-260

[63] Wang X, Hai C X. Ros acts as a double-edged sword in the pathogenesis of type 2 diabetes mellitus: Is Nrf2 a potential target for the treatment? [J]. Mini Reviews in Medicinal Chemistry, 2011, 11(12): 1082-1092

[64] Chartoumpekis D V, Ziros P G, Psyrogiannis A I, et al. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice [J]. Diabetes, 2011, 60(10): 2465-2473

[65] Okamoto H, Hribal M L, Lin H V, et al. Role of the forkhead protein FoxO1 in beta cell compensation to insulin resistance [J]. The Journal of Clinical Investigation, 2006, 116(3): 775-782

[66] Glauser D A, Schlegel W. The emerging role of foxo transcription factors in pancreatic beta cells [J]. The Journal of Endocrinology, 2007, 193(2): 195-207

[67] Puddu A, Storace D, Odetti P, et al. Advanced glycation end-products affect transcription factors regulating insulin gene expression [J]. Biochemical and Biophysical Research Communications, 2010, 395(1): 122-125

[68] Buteau J, Shlien A, Foisy S, et al. Metabolic diapause in pancreatic beta-cells expressing a gain-of-function mutant of the forkhead protein FoxO1 [J]. The Journal of Biological Chemistry, 2007, 282(1): 287-293

[69] Talchai C, Xuan S, Lin H V, et al. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure [J]. Cell, 2012, 150(6): 1223-1234

[70] Buteau J, Spatz M L, Accili D. Transcription factor FoxO1 mediates glucagon-like peptide-1 effects on pancreatic beta-cell mass [J]. Diabetes, 2006, 55(5): 1190-1196

[71] Fang D, Huang Z, Guan H, et al. The Akt/FoxO1/p27 pathway mediates the proliferative action of liraglutide in beta cells [J]. Molecular MedicineReports, 2012, 5(1): 233-238

[72] Araujo J A, Barajas B, Kleinman M, et al. Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress [J]. Circulation Research, 2008, 102(5): 589-596

[73] Xu X, Liu C, Xu Z, et al. Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue [J]. Toxicological Sciences : An Official Journal of the Society of Toxicology, 2011, 124(1): 88-98

[74] Barnes P J, Karin M. Nuclear factor-kappab: A pivotal transcription factor in chronic inflammatory diseases [J]. The New England Journal of Medicine, 1997, 336(15): 1066-1071

[75] Cnop M, Welsh N, Jonas J C, et al. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: Many differences, few similarities [J]. Diabetes, 2005, 54 Suppl 2: S97-107

[76] Corbett J A, Wang J L, Sweetland M A, et al. Interleukin 1 beta induces the formation of nitric oxide by beta-cells purified from rodent islets of langerhans. Evidence for the beta-cell as a source and site of action of nitric oxide [J]. The Journal of Clinical Investigation, 1992, 90(6): 2384-2391

[77] Ankarcrona M, Dypbukt J M, Brune B, et al. Interleukin-1 beta-induced nitric oxide production activates apoptosis in pancreatic rinm5f cells [J]. Experimental Cell Research, 1994, 213(1): 172-177

[78] Ammendrup A, Maillard A, Nielsen K, et al. The c-jun amino-terminal kinase pathway is preferentially activated by interleukin-1 and controls apoptosis in differentiating pancreatic beta-cells [J]. Diabetes, 2000, 49(9): 1468-1476

[79] Bonny C, Oberson A, Negri S, et al. Cell-permeable peptide inhibitors of jnk: Novel blockers of beta-cell death [J]. Diabetes, 2001, 50(1): 77-82

[80] Ghosh S, Baltimore D. Activation in vitro of NF-kappa B by phosphorylation of its inhibitor I kappa B [J]. Nature, 1990, 344(6267): 678-682

[81] Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells [J]. Diabetes, 2000, 49(11): 1939-1945

[82] Koulajian K, Desai T, Liu G C, et al. Nadph oxidase inhibition prevents beta cell dysfunction induced by prolonged elevation of oleate in rodents [J]. Diabetologia, 2013, 56(5): 1078-1087

[83] Ehses J A, Meier D T, Wueest S, et al. Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet [J]. Diabetologia, 2010, 53(8): 1795-1806

[84] Kulkarni R N. Receptors for insulin and insulin-like growth factor-1 and insulin receptor substrate-1 mediate pathways that regulate islet function [J]. Biochemical Society Transactions, 2002, 30(2): 317-322

[85] Fiorentino T V, Prioletta A, Zuo P, et al. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases [J]. Current Pharmaceutical Design, 2013, 19(32): 5695-5703

[86] Yamato M, Shiba T, Yoshida M, et al. Fatty acids increase the circulating levels of oxidative stress factors in mice with diet-induced obesity via redox changes of albumin [J]. The FEBS Journal, 2007, 274(15): 3855-3863

[87] Poitout V, Robertson R P. Minireview: Secondary beta-cell failure in type 2 diabetes--a convergence of glucotoxicity and lipotoxicity [J]. Endocrinology, 2002, 143(2): 339-342

[88] Robertson R P, Zhang H J, Pyzdrowski K L, et al. Preservation of insulin mrna levels and insulin secretion in hit cells by avoidance of chronic exposure to high glucose concentrations [J]. The Journal of Clinical Investigation, 1992, 90(2): 320-325

[89] Butler A E, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes [J]. Diabetes, 2003, 52(1): 102-110

[90] Robertson R P, Harmon J S. Pancreatic islet beta-cell and oxidative stress: The importance of glutathione peroxidase [J]. FEBS Letters, 2007, 581(19): 3743-3748

[91] Harmon J S, Tanaka Y, Olson L K, et al. Reconstitution of glucotoxic HIT-T15 cells with somatostatin transcription factor-1 partially restores insulin promoter activity [J]. Diabetes, 1998, 47(6): 900-904

[92] Maestre I, Jordan J, Calvo S, et al. Mitochondrial dysfunction is involved in apoptosis induced by serum withdrawal and fatty acids in the beta-cell line INS-1 [J]. Endocrinology, 2003, 144(1): 335-345

[93] Giacca A, Xiao C, Oprescu A I, et al. Lipid-induced pancreatic beta-cell dysfunction: Focus on in vivo studies [J]. American Journal of Physiology Endocrinology and Metabolism, 2011, 300(2): E255-262

[94] Rys-Sikora K E, Gill D L. Fatty acid-mediated calcium sequestration within intracellular calcium pools [J]. The Journal of Biological Chemistry, 1998, 273(49): 32627-32635

[95] Boden G, Chen X, Ruiz J, et al. Mechanisms of fatty acid-induced inhibition of glucose uptake [J]. The Journal of Clinical Investigation, 1994, 93(6): 2438-2446

[96] Hagman D K, Latour M G, Chakrabarti S K, et al. Cyclical and alternating infusions of glucose and intralipid in rats inhibit insulin gene expression and PDX-1 binding in islets [J]. Diabetes, 2008, 57(2): 424-431

[97] Bajaj M, Suraamornkul S, Kashyap S, et al. Sustained reduction in plasma free fatty acid concentration improves insulin action without altering plasma adipocytokine levels in subjects with strong family history of type 2 diabetes [J]. The Journal of Clinical Endocrinology and Metabolism, 2004, 89(9): 4649-4655

[98] Cusi K, Kashyap S, Gastaldelli A, et al. Effects on insulin secretion and insulin action of a 48-h reduction of plasma free fatty acids with acipimox in nondiabetic subjects genetically predisposed to type 2 diabetes [J]. American Journal of Physiology Endocrinology and Metabolism, 2007, 292(6): E1775-1781

[99] Stoffers D A, Zinkin N T, Stanojevic V, et al. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence [J]. Nature Genetics, 1997, 15(1): 106-110

[100] Stoffers D A, Ferrer J, Clarke W L, et al. Early-onset type-II diabetes mellitus (MODY4) linked to IPF1 [J]. Nature Genetics, 1997, 17(2): 138-139

[101] Kaneto H, Miyatsuka T, Kawamori D, et al. PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function [J]. Endocrine Journal, 2008, 55(2): 235-252

[102] Shu T, Zhu Y, Wang H, et al. Ages decrease insulin synthesis in pancreatic beta-cell by repressing PDX-1 protein expression at the post-translational level [J]. PLoS One, 2011, 6(4): e18782

[103] Samaras S E, Zhao L, Means A, et al. The islet beta cell-enriched ripe3b1/maf transcription factor regulates PDX-1 expression [J]. The Journal of Biological Chemistry, 2003, 278(14): 12263-12270

[104] Wang H, Brun T, Kataoka K, et al. MafA controls genes implicated in insulin biosynthesis and secretion [J]. Diabetologia, 2007, 50(2): 348-358

[105] Zhang C, Moriguchi T, Kajihara M, et al. MafA is a key regulator of glucose-stimulated insulin secretion [J]. Molecular and Cellular Biology, 2005, 25(12): 4969-4976

[106] Hagman D K, Hays L B, Parazzoli S D, et al. Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of langerhans [J]. The Journal of Biological Chemistry, 2005, 280(37): 32413-32418

[107] Poitout V, Hagman D, Stein R, et al. Regulation of the insulin gene by glucose and fatty acids [J]. The Journal of Nutrition, 2006, 136(4): 873-876

[108] Harmon J S, Stein R, Robertson R P. Oxidative stress-mediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells [J]. The Journal of Biological Chemistry, 2005, 280(12): 11107-11113

猜你喜欢

颗粒物氧化应激胰岛素
基于炎症-氧化应激角度探讨中药对新型冠状病毒肺炎的干预作用
自己如何注射胰岛素
南平市细颗粒物潜在来源分析
固定源细颗粒物监测技术现状分析与思考
氧化应激与糖尿病视网膜病变
门冬胰岛素30联合二甲双胍治疗老年初诊2型糖尿病疗效观察
错流旋转填料床脱除细颗粒物研究
糖尿病的胰岛素治疗
多层介质阻挡放电处理柴油机尾气颗粒物
乙肝病毒S蛋白对人精子氧化应激的影响