数学教学的中小学衔接
2014-02-25杨丽娟
杨丽娟
小学到初中,标志着学生跨入新的学习阶段,中小学数学教学衔接是认真贯彻九年义务教育的重要环节。如何做好中小学数学教学的衔接,是摆在数学教师面前的一个重要任务,也是中小学数学教学改革的重要课题。要解决这一问题,必须依靠中小学教师共同努力。中小学数学教学的衔接,不仅体现在学生学法的衔接,更体现在教师教法的衔接。根据多年的教学实践,教学中应把中小学数学内容作为一个系统进行分析和研究,发现新旧知识的衔接点,解决教学方法上的衔接问题。
教学内容的衔接
刚进入中学时,因教学环境的变化、课程的增加,初中教师对学生的基础不了解,教学起点把握不准,极易造成中小学教学脱节。因此,中学教师对学生的思想状况、知识基础要有充分了解,摸清学生的实际水平,根据具体情况分别对待,鼓励学生克服畏难情绪,尽快适应新的学习环境。
进行“算术数”与“有理数”的过渡 小学到中学,数的概念从“算术数”扩充到“有理数”,这是学生进入中学遇到的第一个难点。小学数学教师应为这次飞跃做好埋伏,注意3个知识点:其一,讲解整数概念时,不能说“整数就是零和自然数的统称”,而应该说“零和自然数都属于整数”,并用集合图表示整数的范围,以示整数除了零和自然数外还有其它的数,为初中学习负整数做好铺垫。其二,渗透具有相反意义的量。小学数学虽不讲负数,但表示相反意义的量较多,如收入和支出、增加和减少、上升和下降等。在教学中有意识地为负数出现做好铺垫,并可出现相应的符号,如+3°表示零上3度,-4°表示零下4度。其三,重视利用数轴上的点表示数。七年级数学一开始就利用数轴学习有理数,因此,小学数学教学要重视画图解题,培养学生识图的能力。
进行“数”与“式”的过渡 小学学习具体的数,初中接触用字母表示数,建立代数概念,这种由“数”到“式”的过渡,是学生认知由具体到抽象、由特殊到一般的飞跃,实现这次飞跃的桥梁则是用字母表示数。教学中,既要引导学生掌握用字母表示数的方法,又要挖掘中小学数学教学内容的内在联系。如整数与整式、分数与分式、有理数与有理式等,引导学生通过比较找出它们之间的联系及区别,在知识间架起衔接的桥梁。
从“算式”到“方程”的过渡 算术方法与代数方法解应用题有着密切的内在联系,虽基本关系不变,但思维方法各异。例如:“比一个数的2倍大5的数是11,求这个数。”算术方法的特点是逆推求解,把所求量放在特殊地位,列出算式(11-5)÷2,求得未知量;而代数方法则是顺向推导,通过等量关系把应用题中“未知”向“已知”转化,设所求数为x,则2x+5=11。由“算式”到“方程”是学生思维方法的一大转折,因此,小学数学在教学时应尽可能用代数方法解答,逐步克服算术解法的思维定势。
从“实验几何”到“论证几何”的过渡 小学的几何初步知识是通过学生动手操作得到几何概念,侧重于计算、演示、初步感知,属于实验几何的范畴,中学平面几何学习需要逻辑推理论证。从“实验几何”发展到“论证几何”,过渡的桥梁是逻辑推理能力,在小学数学教学中,可从以下几方面做好衔接工作:一是充分挖掘小学数学教材潜在的逻辑推理因素,如解方程和利用运算律进行简便计算的题目,要求学生说出每一步的依据;二是应用题教学中,会用语言和数学符号表达数量之间的关系,逐步培养学生严谨的逻辑推理能力;三是在几何初步知识教学中,适当安排具有推理论证因素的练习,图形用字母注明,解题后要求学生养成口头说明逻辑推理过程的习惯。
衔接中的具体方法
兴趣上的衔接与培养 中学学习对初一新生来说具有新鲜感,教师应抓住契机培养学生的学习兴趣,激发其学习热情。开学第一堂课,结合学生所熟知的事例,给学生讲述什么是数学、数学的特点、数学的用途及如何学好数学,让学生感受到数学用途广,与实际生活关系密切,从而产生学好数学的决心。
新旧知识的衔接 心理学研究表明:学习者必须将新知与认知结构中的旧知发生相互作用,使旧知得到更新改造,使新知获得实际意义。因此,教师在传授新知时,应抓住新旧知识间的联系,指导学生进行类比、对照,揭示新知的本质。如有理数乘法法则,与小学的不同在于需要确定积的符号,因而讲解的重点放在符号法则上。
教师教法上的衔接与更新 小学教学进度慢、坡度缓、方法固定,强调直观演示,重感性知识、形象思维;中学教学进度快、坡度大、方法灵活,强调推理论证,重理性知识、抽象思维。解决教学方法上的衔接问题,关键在于培养学生的自学能力。小学倡导学生自主、合作、探究;中学从学生的认知结构和认知规律出发,从实际生活引入概念,注重培养抽象思维和逻辑推理能力。
学生与教师的衔接 中学生因身心发展的不平衡,学习上独立性和依赖性、主动性和被动性同时存在,对教师具有似信非信的心理。因此,教师要与学生平等相处,以满腔的热情去感化学生,使教与学处于民主、和谐的气氛之中。
(作者单位:江苏省昆山市葛江中学)endprint