APP下载

线粒体KATP通道介导远端缺血预处理对严重失血性休克大鼠在体心脏功能的保护作用

2014-02-14胡宪文蒋玲玲刘晓芬

安徽医科大学学报 2014年6期
关键词:回输失血性远端

胡宪文,蒋玲玲,刘晓芬,吴 云,李 云,张 野

线粒体KATP通道介导远端缺血预处理对严重失血性休克大鼠在体心脏功能的保护作用

胡宪文,蒋玲玲,刘晓芬,吴 云,李 云,张 野

目的观察远端缺血预处理(RIPC)对严重失血性休克大鼠在体心脏功能的保护作用及其机制。方法32只雄性SD大鼠,体重300~350 g,随机分成4组:对照组(C组)、失血性休克组(S组)、RIPC组(R组)、RIPC+线粒体KATP通道阻滞剂组(B组),每组8只。采用经大鼠颈动脉60 min内放血占总血容量50%,观察30 min后经颈静脉30 min回输释放的血液建立严重失血性休克和复苏模型。在放血前双侧后肢以止血带捆绑阻断血流5 min,再灌注5 min,反复4个循环形成RIPC。B组在RIPC前15 min经颈静脉注入线粒体KATP通道阻滞剂(5-羟基葵酸盐)10 mg/kg。C组所有手术操作同S组,但不放血。持续监测心电图、平均动脉压(MAP)到血液回输后2 h,在放血前、放血后、输血前、输血后即刻、输血后1、2 h用彩色超声仪测量心输出量(CO)、左室射血分数(LVEF)、左室短轴缩短率(LVFS)、心肌做功指数(MPI)、左室后壁厚度(LVPWD)。结果在失血和休克阶段,与C组比较,S组、B组和R组MAP、CO、LVEF、LVFS均降低(P<0.01),MPI、LVPWD升高(P<0.01);血液回输后,与C组比较,R组MAP、CO、LVEF、LVFS、MPI、LVPWD差异无统计学意义;与R组比较,S组和B组MAP、CO、LVEF、LVFS明显降低(P<0.01),MPI、LVPWD明显升高(P<0.01);S组和B组各心脏功能指标差异无统计学意义。结论RIPC明显保护严重失血性休克大鼠在体心脏功能,其保护作用可能与线粒体KATP通道激活有关。

远端缺血预处理;失血性休克;心功能;线粒体KATP通道

术中出血是大手术尤其选择性血管外科手术的常见并发症,严重术中出血会导致失血性休克,使围术期死亡率增加到5%~8%[1]。尽管液体复苏是治疗失血性休克的主要方法,但失血性休克和复苏可导致心肌的缺血再灌注损伤,直接影响心脏功能[2]。有报道[3-6]显示远端缺血预处理(remote ischemic preconditioning,RIPC)对缺血再灌注心肌具有保护作用,然而RIPC是否能够减轻严重失血性休克与复苏导致的心肌缺血再灌注损伤,从而维护心脏功能,目前国内外尚无报道。该研究旨在观察RIPC对在体大鼠失血性休克与复苏后心脏功能的影响,为临床应用提供参考依据。

1 材料与方法

1.1 药品和仪器

戊巴比妥(Virbac AH Inc,批号:E0149);5-羟基葵酸盐(美国Sigma公司,批号SLBC7951V);抽血输血双向全自动输液泵(Genie TouchTM,美国);动物呼气末CO2监测仪(End-Til IL 200,美国Midmark-Cardell公司);动物血压心电图监护仪(Series 7010 monitor,美国Marquette公司)。

1.2 实验动物

健康成年雄性SD大鼠32只,清洁级,6月龄,体重300~350 g,由Harlan实验中心提供,大鼠自由摄食进水,在室温(22±1)℃,相对湿度(50±5)%,光照/黑夜周期12 h/12 h环境中适应饲养1周后实验。术前12 h禁食。

1.3 动物分组

32只大鼠随机分为4组(每组8只):对照组(C组)、失血性休克组(S组)、RIPC组(R组)、RIPC+线粒体KATP通道阻滞剂组(B组)。经大鼠左颈动脉60 min内放出血占总血容量50%,观察30 min后经右颈静脉30 min内回输放出的血液建立严重失血性休克与复苏模型[7]。C组所有手术操作同S组,但不放血。R组和B组在放血开始前双侧后肢以止血带捆绑阻断血流5 min,松开5 min,反复4次,每次捆绑以双后肢皮肤颜色改变及超声多普勒在捆绑下方听不到动脉波动为准[8]。B组在RIPC前15 min经颈静脉注入线粒体KATP通道阻滞剂(5-羟基葵酸盐)10 mg/kg[9]。

1.4 失血性休克和复苏模型制作

大鼠麻醉前禁食8 h,自由饮水。腹腔内注射戊巴比妥钠50 mg/kg麻醉后仰卧位固定在实验台上,气管内插管,保留自主呼吸。取颈正中切口,右颈静脉置管用于输血及测中心静脉压,左颈动脉插管用于放血及测动脉压。经颈静脉给予肝素200 U/kg 10 min后,经颈动脉由抽血输血双向全自动输液泵(Genie TouchTM,美国)在1 h内持续放血,失血量占总血容量50%(总血容量占体重6.12%)[10]。观察30 min后,经颈静脉在30 min内回输放出的血液,建立失血性休克和复苏模型。所有动物持续监测心电图、平均动脉压(mean artery pressure,MAP)到血液回输后2 h。待清醒拔除所有导管,缝合伤口,肌肉注射青霉素预防感染。采用烤灯照射维持直肠温约37℃。待大鼠翻正反射恢复且完全清醒后放回笼中饲养。

1.5 心功能测定

在放血前、放血结束即刻、血液回输前、血液回输后即刻、回输后1、2 h,采用Vivid彩色超声仪测量3个心动周期左心室舒张末期内径和左心室收缩末期内径,计算心输出量(cardiac output,CO)、左室射血分数(left ventricular ejection fraction,LVEF)、左室短轴缩短率(left ventricular fraction shortening,LVFS)、左室收缩末期内径(left ventricular end-systolic dimension,LVDs)、左室舒张末期内径(left ventricular end-diastolic dimension,LVDd),LVFS=(LVDd-LVDs)/LVDd。测量3个心动周期等容舒张时间(isovolumic relaxation time,IVRT)、等容收缩时间(isovolumic contraction time,IVCT)和射血时间(ejection time,ET),计算左心室心肌做功指数(myocardial power index,MPI),MPI=(IVCT+IVRT)/ET。测量3个心动周期左室后壁厚度(left ventricular posterior wall dimension,LVPWD)。

1.6 统计学处理

2 结果

2.1 一般情况

4组大鼠MAP、CO、LVEF、LVFS、 LVPWD、MPI在放血前基础值差异无统计学意义(P>0.05)。4组大鼠均经受了从放血开始到输血后1 h的实验过程,但在输血后2 h时,C组有8只,R组有8只,S组剩余6只,B组剩余6只。

2.2 统计分析

在不同时间点多组均数比较采用单因素方差分析的F值见表1。

2.3 心功能测定

在失血和休克观察阶段,与C组比较,S组、R组和B组MAP、CO、LVEF、LVFS均降低(P<0.01),MPI、LVPWD升高(P<0.01);S组、R组和B组MAP、CO、LVEF、LVFS、MPI、LVPWD差异无统计学意义(P>0.05)。血液回输后,与C组比较,S组和B组MAP、CO、LVEF、LVFS均降低(P<0.01),MPI、LVPWD升高(P<0.01),R组和C组MAP、CO、LVEF、LVFS、MPI、LVPWD差异无统计学意义(P>0.05);与R组比较,S组和B组MAP、CO、LVEF、LVFS均降低(P<0.01),MPI、LVPWD升高(P<0.01);S组和B组MAP、CO、LVEF、LVFS、MPI、LVPWD差异无统计学意义(P>0.05)。见表2。

表1 不同时间点多组均数比较单因素方差分析的F值

3 讨论

失血性休克是由于急性大量失血引起有效循环血量不足、急性微循环障碍、组织灌流不足,而导致组织与细胞缺血、缺氧、代谢障碍和器官功能受损为特征的综合征。虽然液体复苏是治疗休克的主要方法,休克后再灌注会加重组织细胞进一步损害[11]。报道[12]表明失血性休克和复苏引起的重要器官缺血再灌注损伤的严重程度与出血量和休克时间有关。早期实验[13]证实失血性休克会导致心脏收缩功能减退,近来学者[14]发现严重失血性休克后心脏舒张功能亦受损。本实验中失血性休克模型采用的失血量占总血容量的50%,属于重度失血性休克,总的休克时间也超过1 h,在回输血液后,多普勒心脏检测显示S组大鼠失血性休克和血液回输后LVEF和LVFS明显降低,MPI和LVPWD明显升高,说明此时大鼠左心室收缩和舒张功能均明显受损。

研究[3-6]表明远端肢体缺血预处理对缺血再灌注的心肌起保护作用。本实验在失血性休克发生前,采用双后肢止血带捆绑阻断血流5 min,松开5 min,反复4次造成RIPC。失血性休克与复苏后,多普勒心脏检测显示R组LVEF和LVFS较S组明显升高,MPI和LVPWD较S组明显降低,血液回输后血流动力学较S组更平稳,表明RIPC保护了心肌,改善了心脏功能,从而提供较稳定的血流动力学。

表2 MAP和心功能指标在大鼠失血性休克和复苏中的变化(±s)

与C组比较:**P<0.01;与R组比较:#P<0.05,##P<0.01

项目放血前放血后输血前输血后即刻输血后1 h输血后2 h MAP(kPa)C组18.05±0.6717.72±0.6418.00±0.7218.12±0.6817.56±0.3917.65±0.49 R组17.87±0.606.64±0.36**7.77±0.76**17.40±0.8916.79±0.9717.11±0.60 B组17.72±0.876.15±0.59**6.85±0.55**13.28±0.71**##12.21±0.75**##11.43±0.74**##S组17.61±0.596.36±0.61**9.53±0.48**13.72±1.04**##12.28±1.36**##11.55±0.69**##CO(ml/min)C组107.5±1.9105.1±3.3105.7±3.5104.3±3.9105.7±2.2103.3±1.4 R组107.6±3.047.0±6.5**49.4±5.4**106.9±8.6101.5±9.898.0±9.7 B组104.6±5.743.4±5.1**44.1±5.5**68.3±5.1**##62.3±5.6**##58.3±8.3**##S组106.5±3.343.0±5.8**43.4±5.1**69.0±5.2**##60.4±5.1**##52.9±6.2**##LVEF(%)C组71.0±0.970.9±0.671.5±0.771.3±0.670.8±0.570.8±0.4 R组71.1±1.461.2±2.1**61.8±2.0**70.0±1.969.8±1.669.7±1.5 B组70.4±1.360.1±2.2**59.3±3.2**64.7±3.4**##61.1±2.7**##55.8±3.8**##S组69.5±1.661.8±3.1**60.6±2.2**63.8±2.3**##59.3±3.0**##53.0±3.6**##LVFS(%)C组34.1±3.833.2±2.633.5±3.433.4±3.233.5±3.033.4±3.2 R组34.4±3.524.8±2.2**24.2±2.3**33.2±3.032.4±3.232.3±3.1 B组34.7±3.123.6±1.8**23.1±1.7**25.1±1.7**##24.0±2.2**##22.7±2.4**##S组34.5±3.623.1±1.8**22.9±2.0**25.8±2.6**##24.5±2.2**##23.3±2.3**##LVPWD(cm)C组0.203±0.0290.201±0.0320.199±0.0280.200±0.0230.201±0.0320.203±0.029 R组0.211±0.0140.280±0.052**0.270±0.048**0.218±0.0200.215±0.0190.218±0.020 B组0.204±0.0220.271±0.040**0.305±0.045**0.280±0.028**##0.304±0.042**##0.312±0.024**##S组0.205±0.0300.327±0.055**0.325±0.051**0.291±0.040**##0.291±0.047**##0.307±0.023**##MPI C组0.69±0.030.70±0.040.69±0.030.69±0.040.70±0.030.70±0.02 R组0.69±0.031.07±0.06**1.01±0.12**0.74±0.060.72±0.060.70±0.04 B组0.68±0.021.14±0.07**1.16±0.12**1.10±0.08**##1.23±0.07**##1.35±0.07**##S组0.69±0.041.13±0.07**1.11±0.05**1.03±0.10**##1.25±0.10*#1.32±0.10*#

远端肢体缺血预处理对缺血再灌注后心肌保护作用的机制复杂,有学者[15]认为线粒体KATP通道参与了其中的保护作用。线粒体KATP通道通过3个机制发挥脏器保护作用[16]:①促使线粒体膜去极化,减少再灌注期间Ca2+的摄取和Ca2+浓度;②保存缺血期间ATP,减低电压依赖性离子通道活性;③减少再灌注期间活性氧的产生。在本研究中,在远端肢体缺血预处理前给予线粒体KATP通道阻滞剂后,多普勒心脏彩超结果显示,远端肢体缺血预处理的心脏保护作用完全被抑制,说明线粒体KATP通道参与了远端肢体缺血预处理的心脏功能的保护作用。

综上所述,在失血性休克和复苏大鼠在体模型中,RIPC减轻心肌缺血再灌注损伤,改善心脏功能,其心肌保护作用可能与其激活线粒体KATP通道有关。

[1] Copeland G P,Jones D,Walters M.POSSUM:a scoring system for surgical audit[J].Br J Surg,1991,78(3):355-60.

[2] Flaherty D C,Hoxha B,Sun J,et al.Pyruvate-fortified fluid resuscitation improves hemodynamic stability while suppressing systemic inflammation and myocardial oxidative stress after hemorrhagic shock[J].Mil Med,2010,175(3):166-72.

[3] Surendra H,Diaz R J,Harvey K,et al.Interaction of δ and κ opioid receptors with adenosine A1 receptors mediates cardioprotection by remote ischemic preconditioning[J].J Mol Cell Cardiol,2013,60:142-50.

[4] Wong G T,Lu Y,Mei B,et al.Cardioprotection from remote preconditioning involves spinal opioid receptor activation[J].Life Sci,2012,91(17-18):860-5.

[5] Hajrasouliha A R,Tavakoli S,Ghasemi M,et al.Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart[J].Eur J Pharmacol,2008,579(1-3):246-52.

[6] Szijártó A,Czigány Z,Turóczi Z,et al.Remote ischemic perconditioning-a simple,low-risk method to decrease ischemic reperfusion injury:models,protocols and mechanistic background[J].A Review J Surg Res,2012,178(2):797-806.

[7] Cammarata G A,Weil M H,Fries M,et al.Buccal capnometry to guide management of massive blood loss[J].J Appl Physiol,2006,100(1):304-6.

[8] Kristiansen S B,Henning O,Kharbanda R K,et al.Remote preconditioning reduces ischemic injury in the explanted heart by a KATPchannel dependent mechanism[J].Am J Physiol Heart Circ Physiol,2005,288(3):H1252-6.

[9] 赵 翚,董海龙,熊利泽,等.线粒体ATP敏感性钾离子通道参与远程预处理对大鼠脑保护作用的机制[J].第四军医大学学报,2007,28(18):1633-5.

[10]Fang X,Tang W,Sun S,et al.Comparison of buccal microcirculation between septic and hemorrhagic shock[J].Crit Care Med,2006,34(12 Suppl):S447-53.

[11]Nandra K K,Takahashi K,Collino M,et al.Acute treatment with bone marrow-derived mononuclear cells attenuates the organ injury/dysfunction induced by hemorrhagic shock in the rat[J].Shock,2012,37(6):592-8.

[12]Horton J W,McDonald G.Heart and brain nucleotide pools during hemorrhage and resuscitation[J].Am J Physiol,1990,259(6Pt2):H1781-8.

[13]Shahani R,Klein L V,Marshall J G,et al.Hemorrhage-induced alpha-adrenergic signaling results in myocardial TNF-alpha expression and contractile dysfunction[J].Am J Physiol Heart Circ Physiol,2001,281(1):H84-92.

[14]Suzuki K,Ogino R,Nishina M,et al.Effects of hypertonic saline and dextran 70 on cardiac functions after burns[J].Am J Physiol Heart Circ Physiol,1995,268(2Pt2):H856-64.

[15]Sato T,Sasaki N,Seharaseyon J,et al.Selective pharmacological agents implicate mitochondrial but not sarcolemmal KATPchannels in ischaemic cardioprotection[J].Circulation,2000,101(20):2418-23.

[16]Ardehali H,O’Rourke B.Mitochondrial KATPchannels in cell survival and death[J].J Mol Cell Cardiol,2005,39(1):7-16.

Remote ischemic preconditioning improves cardiac dysfunction via mitochondrial KATPchannel activation in vivo rat model of severe hemorrhagic shock

Hu Xianwen,Jiang Lingling,Liu Xiaofen,et al
(Dept of Anesthesiology,The Second Affiliated Hospital of Anhui Medical University,Hefei 230601)

ObjectiveTo investigate the effects of remote ischemic preconditioning on cardiac dysfunction in vivo rat model of severe hemorrhagic shock and its potential mechanism.MethodsThirty-two male Sprague-Dawley rats,weighting 300~350 g,were randomized into four groups:control(C)group;shock(S)group;Remote ischemic preconditioning(R)group;Remote ischemic preconditioning with mitochondrial KATPchannel blocker(B)group.Hemorrhagic shock and resuscitation were induced by reduction of 50%of total blood volume over an interval of 1 hour,30 mins after bleeding,reinfusion was initiated with the shed blood over the ensuing 30 mins.RIPC was performed by four cycles of 5 mins of limbs ischemia followed by reperfusion for 5 mins.The mitochondrial KATPchannel blocker(5-hydroxydeconate)was injected into the right atrium fifteen minutes before the initiation of RIPC.The procedure in control group was the same as shock group but not bleeding.Electrocardiogram and mean artery pressure(MAP)were continuously measured to 2 h after reinfusion.Cardiac function was measured by echocardiography at baseline,after bleeding,before reinfusion,after reinfusion and at hourly intervals after reinfusion.ResultsCompared with C group,MAP,CO,LVEF,LVFS were significantly decreased and MPI,LVPWD were significantly increased in R,S and B groups(P<0.01)during hemorrhagic and shock phase.After reinfusion,MAP,CO,LVEF,LVFS,MPI,LVPWD were not different between R group and C group.Compared with R group,MAP,CO,LVEF,LVFS were significantly decreased and MPI,LVPWD were significantly increased in S group than B group(P<0.01).There were no differences of cardiac function indexes between S group than B group.ConclusionRIPC obviously improves cardiac dysfuntion in vivo rat following severe hemorrhagic shock and resuscitation,the result is associated with the activation of mitochondrial KATPchannel.

remote ischemic preconditioning;hemorrhagic shock;cardiac funtion;mitochondrial KATPchannel

R 605.971;R 654.2;R 971.2

A

1000-1492(2014)06-0735-04

2014-01-15接收

国家自然科学基金青年基金(编号:81200089)

安徽医科大学第二附属医院麻醉科,合肥 230601

胡宪文,男,副主任医师,硕士生导师,责任作者,E-mail:huxianwen001@126.com

猜你喜欢

回输失血性远端
分析妇产科治疗失血性休克治疗的相关手段
内侧楔骨远端倾斜与拇外翻关系的相关性
车祸创伤致失血性休克的急救干预措施分析
颍上县人民医院成功开展自体血液回输技术
H形吻合在腹腔镜下远端胃癌根治术中的应用
消化液回输的临床应用及护理
超声造影定量分析急性失血性休克肾血流灌注的实验研究
大型脊柱手术中应用控制性降压复合自体血回输的效果研究
胃小弯全切术治疗远端胃癌的随机对照研究
甘肃当归对失血性血虚小鼠外周血常规及肝、脾、胸腺指数的影响