![](https://img.fx361.cc/images/2023/0408/4d53beaea4335a786e7ea7aa162be125ade21a1e.webp)
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
Q(z)
和
Q(z)pγ(z)1+Mz,
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
Q(z)1+M1z,
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
Q(z)pγ(z)1+M1z,
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
应用文献[5]中引理2.2的方法,可以证明引理2.引理3是文献[9]中引理2.17的特殊情况.
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
![](https://img.fx361.cc/images/2023/0408/5fd1659add0337347f86b719154d684a82c9b736.webp)
(1)
那么P(z)1+R1z,其中R1=cR/(n-c).
证明令P(z)=1+R1ω(z),R1=cR/(n-c).则ω(z)在U内解析, 且
ω(z)=bnzn+bn+1zn+1+…
我们要证明P(z)1+R1z,只需证明对所有zU,有.用反证法,假定不成立,则存在z0U{0}使得
![](https://img.fx361.cc/images/2023/0408/df0948bda2c81f993901518026c8725bf81aa0b8.webp)
根据引理1,存在实数k≥n≥1,使得
z0ω′(z0)=kω(z0).
则
![](https://img.fx361.cc/images/2023/0408/0fe388c5bf26a1e2a2d6f91fe76ff64241d7df34.webp)
这与式(1)相矛盾.因此可得P(z)1+R1z.
注1 在引理4中令n=1,可得文献[3]中相关结果.当n>1时,引理4改进了文献[5]的引理2.1.
引理5 设≠0 是一个实数,[0,1),P(z)H[1,n]和
P(z),
(2)
其中
M=Mn(,.
(3)
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
P(z)[1-+((1-β)p(z)+β)]1+Mz,
(4)
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
![](https://img.fx361.cc/images/2023/0408/28b8c04f2b1d4b2d1639aebb3eabe87ae8670722.webp)
![](https://img.fx361.cc/images/2023/0408/9a263c6e30993dc161cd3b1fbfff9117f9aa51ef.webp)
(5)
令P=P(z0)=u+iv,则由式(5)可得
![](https://img.fx361.cc/images/2023/0408/d0a5f8a29ee6b76021665554c3d02dd3201142ee.webp)
![](https://img.fx361.cc/images/2023/0408/8fa55902e15a3b5468c1ae85149aec55117f5830.webp)
![](https://img.fx361.cc/images/2023/0408/9b671c927842375e342fa5dd8a6c91c474199788.webp)
2Re{P[1-+(β+(1-β)iρ)]}+1=
(u2+v2)2(1-β)2ρ2+2(1-β)vρ+
![](https://img.fx361.cc/images/2023/0408/a0b440313c08d3644ea5c26f72778622517b0399.webp)
(u2+v2)2(1-β)2ρ2+2(1-β)vρ+
![](https://img.fx361.cc/images/2023/0408/231a787dd5d617b6ec6140b040bb4759882ba52e.webp)
定义
G(ρ)=(u2+v2)2(1-β)2ρ2+2(1-β)vρ+
![](https://img.fx361.cc/images/2023/0408/8342eb48c60ab88c9e6bbe5e8de43300c9b6297c.webp)
则W-M2≥G(ρ).
因为(u2+v2)2(1-β)2>0,不等式G(ρ)≥0对所有实数ρ成立,如果判别式
![](https://img.fx361.cc/images/2023/0408/b226f58ddac9c5a7105920c97bd07490472be76d.webp)
![](https://img.fx361.cc/images/2023/0408/a70eee401ce4398e10429f9a9a9092023897424b.webp)
由式(2)可得
![](https://img.fx361.cc/images/2023/0408/638cb705f2b876b9d4a62eccb074cd034271c6f8.webp)
(6)
应用式(6)、(2)和(3),经过计算可得
![](https://img.fx361.cc/images/2023/0408/3cce8de561ce545ac2ba66a15a6cbd75eab1fa15.webp)
因此Δ≤0,由此可得G(ρ)≥0对所有实数ρ成立,或者W≥M2,因此
![](https://img.fx361.cc/images/2023/0408/d4fff15cdd5c87b91a3b6cccd95a507dcdc8183d.webp)
这与式(4)矛盾,故引理5得证.
定理1 设>0,0<α(7)
其中幂函数取主值,M=Mn(,pα,β)由式(3)定义,则f).
![](https://img.fx361.cc/images/2023/0408/1aefea4893b1e430bf98f88ade6e09dfeb12f33e.webp)
(8)
由式(7)和式(8)可得
![](https://img.fx361.cc/images/2023/0408/b50a03561cef55bc19fe48b65e1217e32b01d5a3.webp)
(9)
![](https://img.fx361.cc/images/2023/0408/7288949b4e7ea3fd497ad2610b0d7dd32cce3321.webp)
P(z).
(10)
![](https://img.fx361.cc/images/2023/0408/25e879d8885d6feee2a28453aeda9a2fffcad44a.webp)
P(z)[1-+((1-β)p(z)+β)]1+Mz.
(11)
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
![](https://img.fx361.cc/images/2023/0408/6ac92670e10969f25f0456ff8494049356dcdc1c.webp)
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
![](https://img.fx361.cc/images/2023/0408/d8073e40c5a5f384875b98cd050f2f141f0c8679.webp)
![](https://img.fx361.cc/images/2023/0408/2768367eb6b5c39089cba1845fe77f789ea1da3e.webp)
(12)
其中幂函数取主值,且
![](https://img.fx361.cc/images/2023/0408/f7dbd27d43a816b4c7ac0e2e2f1c558847d20d25.webp)
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
![](https://img.fx361.cc/images/2023/0408/e12cc31d3fdd6697363d5a9a631605aa12520e32.webp)
![](https://img.fx361.cc/images/2023/0408/f2b061ecaf96c436b85d8adba5b4af23d0fde2b9.webp)
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
注2 在推论1和推论2中,令p=n=1,β=0,可得文献[3]中相关结果;在推论1中令β=0,p=1,可得定理B或者文献[5]中定理2.3;在推论1和推论2中,令p=α=1,n=2,β=0,可得定理A或者文献[4]中定理2.
注意到
可得
(13)
其中
![](https://img.fx361.cc/images/2023/0408/f2ca0725bcac27590a4d339125044a0dd40ff3d5.webp)
M3().
(14)
根据定理1,可得如下定理:
定理2 设>和0![](https://img.fx361.cc/images/2023/0408/fb84ccd79c094f4979815383131f20cf3bc0c459.webp)
![](https://img.fx361.cc/images/2023/0408/26f9b241ef544d154ebcd3f81b5f8138569038a9.webp)
(15)
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
![](https://img.fx361.cc/images/2023/0408/041ffacc8079f19198e67b560374f6044a04ac2c.webp)
在推论3中令p=1,可得如下推论:
![](https://img.fx361.cc/images/2023/0408/6989d77a4ed28a0b6132bfe3bf61ae1f6858b344.webp)
![](https://img.fx361.cc/images/2023/0408/fd1d7522a1b5d040614e018b8f217fc9caa57a69.webp)
(16)
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
![](https://img.fx361.cc/images/2023/0408/29f73780261f2ccb9de91844ae4c9c36c64f569c.webp)
注3 推论4改进了定理B或者文献[5]的定理2.3;在推论4中令n=2,α=1,可得一个结果,此结果改进了定理A.
定理3 设≥1 和0
(17)
其中幂函数取主值,和
N=Nn(,α,γ)=
(18)
![](https://img.fx361.cc/images/2023/0408/a9e4b0652da402c5caa0dda5c443a8c41b45cbdf.webp)
证明由0<γ≤1和≥1,有(,pα,0),根据定理1,得fS*(p,0).
![](https://img.fx361.cc/images/2023/0408/1aefea4893b1e430bf98f88ade6e09dfeb12f33e.webp)
(19)
由式(17)和式(19),可得
![](https://img.fx361.cc/images/2023/0408/b50a03561cef55bc19fe48b65e1217e32b01d5a3.webp)
(20)
![](https://img.fx361.cc/images/2023/0408/13f0956e8763160e8ccf9cf44d28130197d02063.webp)
P(z)1+Nz.
(21)
因此由式(19)~(21)可得
![](https://img.fx361.cc/images/2023/0408/1581566af151c7c50bc80eea0ad4754e95037c81.webp)
即
P(z)qγ(z)1+Nz.
因为
![](https://img.fx361.cc/images/2023/0408/f26265c4cfcc1ada305232f3554c367827911b89.webp)
根据式(21)和引理2,可得Req(z)>0,U.
P(z).
(22)
由式(20)和pα/(n-pα)≥1,可得
![](https://img.fx361.cc/images/2023/0408/abca7d07e643da722bbfffc4afdcaa1ccf687ddd.webp)
(23)
所以由式(22)和式(23)可得
![](https://img.fx361.cc/images/2023/0408/1581566af151c7c50bc80eea0ad4754e95037c81.webp)
即
P(z)qγ(z).
![](https://img.fx361.cc/images/2023/0408/f37f28f58a1c585b54528e3826d1da9c152a453a.webp)
注4 在定理3中令p==1,可得定理C或者文献[5]中的定理2.4.
[1] LIU Mingsheng. On certain sufficient condition for starlike functions[J]. Soochow J of Math,2003,29(4):407-412.
[2] ZHU Yucan. Some starlikeness criterions for analytic functions[J]. J Math Anal Appl, 2007,335(2):1452-1459.
[3] OBRADOVIC M. A class of univalent functions[J].Hokkaido Math J, 1998,27(2):329-335.
[4] SINGH V. On a class of univalent functions[J].Internat J Math Math Sci,2000,23(12):855-857.
[5] OBRADOVIC M,OWA S. Some sufficient conditions for strongly starlikeness[J].Internat J Math Math Sci,2000,24(9):643-647.
![](https://img.fx361.cc/images/2023/0408/790b45fc05a0ddb5e875888766d883db30668b6c.webp)
[7] 刘志文, 刘名生. 某类解析函数子类的性质与特征[J]. 华南师范大学学报:自然科学版,2010(3):11-14.
[8] JACK I S. Functions starlike and convex of orderα[J]. J London Math Soc,1971,3:469-474.
[9] PONNUSAMY S,SINGH V. Criteria for strongly starlike functions[J].Complex Variables,1997,34:276-291.
![](https://img.fx361.cc/images/2023/0408/790b45fc05a0ddb5e875888766d883db30668b6c.webp)
![](https://img.fx361.cc/images/2023/0408/9e40fc796836592a1c7f700c7e043b28b20999ca.webp)
LIU Mingsheng
(School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China)
![](https://img.fx361.cc/images/2023/0408/7dd4b3dabad42cff662c1a8b593779f45fb8648a.webp)
2012-01-12
教育部博士点基金项目(20050574002)
*通讯作者:刘名生,教授,Email: liumsh@scnu.edu.cn.
1000-5463(2013)01-0014-05
O174.51
A
10.6054/j.jscnun.2012.12.002
【中文责编:庄晓琼 英文责编:肖菁】