碳纳米管改性的蜡基复合粘结剂
2013-04-29陈小华黄群汪次荣唐群力周翰
陈小华 黄群 汪次荣 唐群力 周翰
摘要:通过熔融共混将功能化的碳纳米管引入到蜡基粘结剂中,得到碳纳米管改性的复合粘结剂.扫描电镜(SEM)显微照片显示,功能化的碳纳米管能均匀分散在粘结剂基体中.偏光显微照片和热性能分析结果表明,碳纳米管的加入能有效地提高粘结剂的结晶度和热稳定性,进而改善生坯在脱脂时的保形性.碳纳米管与粘结剂的非共价键结合有助于碳纳米管的均匀分散,更可能有利于复合材料成型后的脱脂.
关键词:碳纳米管;蜡基复合粘结剂;金属粉末注射成形
中图分类号:TB321;TB324 文献标识码:A
在众多金属基复合材料增强相中,碳纳米管(CNTs)以其独特的结构和性能为人们所青睐.选择碳纳米管作为增强相,金属基复合材料有望获得高强度、高导电、高导热、低膨胀、轻质等优异的综合性能,更难能可贵的是由于碳纳米管良好的柔韧性,复合材料将易于加工和处理.因此这一诱人的应用前景已经吸引人们为之努力.J.Yang等[1]用酒精和酸将碳纳米管与镁粉分散混合,干燥后在25 MPa的压力下进行热压烧结.结果表明:碳纳米管在基体中呈束状分布,增强相与基体相之间没有发生界面反应,强度最高仅为200 MPa.孟飞等[2]采用粉末冶金工艺结合轧制退火制备了碳纳米管弥散强化铜基复合材料,研究表明,碳纳米管弥散强化使材料的硬度得到了提高,但分布的均匀性及两相的结合仍不够理想.韩国Walid等[3]首先采用化学镀方法在碳纳米管表面沉积铜,冷压后利用等离子体火焰烧结成型.结果表明其硬度可为原来的两倍,杨氏模量提高近一倍.但是热膨胀系数仍然很高,界面结合程度不好、碳纳米管分布不均以及空隙的产生影响了复合材料综合性能的发挥.Kim等 [4]
2.3复合粘结剂的结晶性能
图3(a),(b),(c)和(d)分别为碳纳米管含量0, 2%, 4%和6%(质量分数)的复合粘结剂的偏光显微照片(暗色区域为非晶区,亮色区域为结晶区).可看出,随着碳纳米管含量的增加,图中片状物尺寸变小,白点的数量增加,说明碳纳米管的加入起到促进形核的作用,并使晶粒细化.为了证实偏光图片的分析结果,我们采用XRD对不同碳纳米管含量的粘结剂进行表征,结果(图4)显示,4种粘结剂的主要吸收峰均出现在2θ为21.3°和23.6°,分别对应于PE的 (110) 和 (200) 晶面.与不含碳纳米管的粘结剂相比,碳纳米管改性的粘结剂在21.3°处的吸收峰明显增强,这进一步说明碳纳米管作为一种增强相能促使基体形核结晶.众所周知,聚合物材料的物理性能很大程度上取决于它们的显微结构和结晶度,且弹性模量和柔韧性等机械性能也受结晶性的影响.添加碳纳米管后粘结剂结晶度的提高和晶粒的细化将导致生坯强度的提高,十分有利于从成型、脱脂到烧结过程中保形性的需求.
2.4复合粘结剂的流变学性能
在注射成形温度下,粉末注射成形喂料的流动性是由粘结剂提供的.为了有效调节注射成形参数以实现良好的充型,需要对粘结剂的粘度进行测定.由于PIM喂料的粘度与工业上使用的热塑性塑料的粘度处于同一范围,测定粘结剂粘度,一般采用塑料行业中所使用的毛细管粘度计.但由于实验条件有限,本实验将常用于测量液体表观粘度的旋转粘度计用来测量熔融状态下复合粘结剂的粘度,也能在一定程度上反应在注射成形温度下粘结剂的流动性.在已知转子转速的条件下,试样对转子的粘滞阻力由测力传感器测得后,即可获得该温度下剪切应力与剪切速率的比值,也就得到了粘度值.原始碳纳米管和功能化碳纳米管的含量与粘度的关系如图5所示.我们可以发现,碳纳米管的加入使得粘结剂的粘度增加.这是因为碳纳米管和粘结剂分子链之间的作用力阻碍了它们的相对运动.因此,我们可以选择较低分子量的聚合物作为粘结剂的组份,这样既能满足流动性和保形性的需求,又有利于后续的脱脂和烧结.进一步增加碳纳米管的含量,粘结剂的粘度没有明显增加,且原始碳纳米管和功能化碳纳米管对粘度的影响趋于一致,说明阻碍作用到达极限值时,粘度也将不再升高.上述结果证明,添加碳纳米管对粘结剂的流动性影响不大,此粘结剂仍能满足金属粉末注射成形对流动性的要求.
2.5复合粘结剂的热性能
图6显示的是添加了6%(质量分数)功能化碳纳米管的改性粘结剂与不含碳纳米管的粘结剂的DSC和TGA性能对比.在DSC曲线图(图6(a))中对应的第一个吸热峰61 ℃对应石蜡的玻璃化温度,第二个吸热峰121 ℃对应PE的玻璃化温度.从方框内曲线可看出,碳纳米管改性粘结剂中PE的玻璃化温度(Tg为121.818 ℃,比普通蜡基粘结剂中PE的结晶温度高1.379 ℃).此外,如图6(b)所示,作为添加剂的功能化碳纳米管使聚合物基体的热分解温度也提高了.从以上结果看来,由于功能化碳纳米管在复合粘结剂中均匀分布,即使在大量石蜡存在的情况下也能诱导PE形成大量的微晶区,提高材料整体的结晶度.同时由于碳纳米管表面有大量的羟基和羧基,能够和PE分子链形成较强的作用力,限制PE链的自由运动,这样就使复合粘结剂中PE的Tg较纯粘结剂中PE有所提高.
更重要的是,热重曲线可用于确定注射成形过程中熔体的上限温度和分解温度,从而制定出合适的成形和脱脂工艺.为了避免粘结剂在混炼和注射等成形过程中降解,应使温度低于170 ℃.当温度达到500 ℃时两种粘结剂的降解趋于稳定.纯粘结剂几乎完全分解,残留量仅为0.15%(质量分数).碳纳米管改性粘结剂的残留量是10.39%.这是由于在氩气气氛保护下碳纳米管并没有降解,且粘结剂分解后有少量的残余碳.这一结果说明,碳纳米管的加入没有对粘结剂的脱除产生很大影响,热脱脂后能够得到较纯净的样品.
3结论
通过熔融混炼成功制备了碳纳米管改性的复合粘结剂.扫描电镜显微照片显示,功能化的碳纳米管在粘结剂基体中能均匀分散,而未经处理的碳纳米管则有较严重的团聚.实验结果表明,功能化碳纳米管的加入能有效提高粘结剂的结晶度,从而将提高生坯的强度和保形性.此外,碳纳米管的加入对复合粘结剂的粘度影响不大,这样就可以既满足保形性要求的同时又不影响喂料的流动性.碳纳米管与粘结剂之间以非共价键连接,这样就可以既使粘结剂脱除干净又保留碳纳米管和金属粉末.综上所述,这种新型碳纳米管改性复合粘结剂适用于金属粉末的注射成形.
参考文献
[1] YANG J, SCHALLER R. Mechanical spectroscopy of Mg reinforced with Al2O3 short fibers and C nanotubes[J]. Materials Science and Engineering A,2004, 370(1/2):512-515.
[2]孟飞, 裴燕斌, 果世驹. 轧制对碳纳米管弥散强化铜基复合材料微观组织的影响[J]. 粉末冶金材料科学与工程,2005, 10(1): 55-58.
[3]WALID M D, BYUNG K L, CHAN B M. Electrical and mechanical properties of carbon nanotube reinforced copper nanocomposites fabricated by electroless deposition process[J]. Materials Science and Engineering A,2009,513/514:247-253.
[4]CHA S I, KIM T K, ARSHAD S N, et al. Extraordinary strengthening effect of carbon nanotubes in metalmatrix nanocomposites processed by molecularlevel mixing[J]. Adv Mater,2005, 17:1377-1381.
[5]XU L S, CHEN X H, PAN W Y. Thermal expansion of MW CNTreinforced copper composite[J]. Transactions of Nonferrous Metals Society of China,2007, 17: S1065-S1069.
[6]MOBALLEGH L, MORSHEDIAN J, ESFANDEH M. Copper injection molding using a thermoplastic binder based on paraffin wax[J]. Materials Letters, 2005, 59(22): 2832-2837.
[7]SIDAMBEA A T, FIGUEROA I A, HAMILTON H G C, et al. Metal injection moulding of CPTi components for biomedical applications[J]. Journal of Materials Processing Technology,2012, 212(7): 1591-1597.
[8]HUANG M S, HSU H C. Effect of backbone polymer on properties of 316L stainless steel MIM compact[J]. Journal of Materials Processing Technology,2009, 209(15/16): 5527-5535.
[9]THOMAS VIELMA P, CERVERA A, LEVENFELD B,et al. Production of alumina parts by powder injection molding with a binder system based on high density polyethylene[J]. Journal of the European Ceramic Society,2008, 28(4): 763-771.
[10]TAO T, ZHANG L, MA J, et al. The production of flexible and electrically conductive polyethylene carbon nanotube shishkebab structures and their assembly into thin films[J]. Industrial & Engineering Chemistry Research,2012, 51(15): 5456-5460.
[11]PAN B, XING B S. Adsorption mechanisms of organic chemicals on carbon nanotubes[J]. Environ Sci Technol, 2008, 42 (24):9005-9013.
[12]ZHANG S J, LIN W, WONG C P, et al. Nanocomposites of carbon nanotube fibers prepared by polymer crystallization[J]. ACS Appl Mater Interfaces,2010, 2 (6): 1642-1647.
[13]LI L Y, CHRISTOPHER Y, LI C Y . Polymer crystallizationdriven, periodic patterning on carbon nanotubes[J]. J Am Chem Soc,2006, 128 (5):1692-1699.
[14]CHEN D,LIU T X,ZHOU X P,et al. Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes[J].J Phys Chem B, 2009,113 (29):9741-9748.