胰高糖素样多肽-1及其类似物的心血管保护研究进展
2013-02-19刘剑锋综述陈韵岱审校
刘剑锋 综述 陈韵岱 审校
解放军医学院/解放军总医院 心内科,北京 100853
胰高糖素样多肽-1(glucagon-like peptide-1,GLP-1)是一种餐后由远端肠腔L型细胞分泌的天然降血糖激素,由30个氨基酸组成,能在下丘脑水平控制食欲和胃饱满感,从而减少食物摄入,使体重下降;同时还有刺激迷走神经使胃排空延迟、促进胰岛素分泌等作用。多项临床研究已证实GLP-1对2型糖尿病有卓越的疗效[1-3],并发现GLP-1对心血管危险因素有保护作用[4-6]。此外,研究发现GLP-1受体(GLP-1R)在心脏以及血管等组织中也有表达[7-9],为GLP-1的心血管保护作用从作用途径上提供了理论基础。但是,也有研究在未表达经典GLP-1R的细胞和组织中观察到了GLP-1及其类似物的多效性,因此,独立于经典GLP-1R之外的GLP-1作用机制及通路值得进一步研究[10]。目前市场上有两种GLP-1R激动剂临床应用:艾塞那肽(exenatide)和利拉鲁肽(liraglutide)。二者分别与天然GLP-1有53%和97%的同源性,均能耐受二肽基肽酶Ⅳ(DPP-Ⅳ)的降解作用,半衰期分别为2.4 h和12 h,可根据葡萄糖浓度“按需”调节胰岛素分泌,低血糖事件发生率低,安全性好。我们从GLP-1的降糖外作用出发,对GLP-1的心血管保护作用作一综述。
1 GLP-1和缺血性心脏病
Nikolaidis等[6]首先报道GLP-1能增加心肌胰岛素敏感性以及心肌葡萄糖的摄取,且和血清胰岛素水平无关。Bose等[11]建立大鼠离体心脏缺血再灌注损伤模型,在缺血前给予GLP-1并持续到再灌注结束,证明了GLP-1能通过激活cAMP和PI3k通路保护离体及完整大鼠心脏的梗死心肌。与该研究结果相似的是,Xie等[12]对低氧-再恢复氧供诱发的大鼠心肌细胞损伤模型研究发现GLP-1能通过PI3k-Akt和MAPK信号通路抑制心肌细胞的凋亡,对心肌细胞有直接保护作用。Ravassa等[13]通过对HL-1心肌细胞的凋亡研究发现,GLP-1主要通过PI3k通路及部分通过ERK1/2通路保护HL-1心肌细胞免受凋亡,且这种细胞保护与血糖浓度无关,然而GLP-1R是否在HL-1细胞上有表达有待商榷。多项研究发现抗凋亡基因血红素氧化酶1(HO-1)、糖原合成激酶(GSK)-3β、Bcl-2家族蛋白、caspase-3和PPARs-β及PPARs-δ均参与了基于GLP-1治疗的心肌保护作用[14-17]。但GLP-1对心肌的保护作用不完全依赖GLP-1R。Ban等[18]发现GLP-1促进了离体小鼠缺血再灌注损伤心脏的功能恢复和心肌细胞活性,但这些保护作用在GLP-1R-/-小鼠也存在;还发现再灌注时给予GLP-1(9-36)减少了缺血再灌注后的缺血损伤,增加了野生型和Glp1r-/-小鼠的cGMP释放、血管扩张和冠脉血流,GLP-1(7-36)和它的代谢产物GLP-1(9-36)能不依赖已知的GLP-1R发挥心血管保护作用。
2 GLP-1和非缺血性心脏病
有研究表明GLP-1能使离体大鼠心肌细胞的cAMP水平增加,但降低了其收缩性,而且不同剂量的GLP-1对左室形成压(left ventricular developed pressure,LVDP)的作用截然不同,0.5 nmol/L降低LVDP,而0.3 nmol/L GLP-1与之作用相反[18-19]。此外,Nikolaidis[6]等通过给有扩张性心肌病的清醒狗输注重组GLP-1[1.5 pmol/(kg·min)],发现左室瞬时压力变化、每搏量、心输出量明显增加,而左室舒张末压、心率和全身血管阻力明显下降,同时心肌葡萄糖的摄取增加。在此基础上,该团队证实GLP-1-(9-36)通过模拟胰岛素而不是促胰岛素作用,模拟了GLP-1-(7-36)刺激心肌葡萄糖摄取以及改善左室功能和全身血流动力学的效应[20]。这些结果也表明GLP-1-(9-36)是活性肽。2010年该团队的研究进一步揭示,GLP-1通过激活p38 MAPK、增加NO的合成以及GLUT1的转位促进心肌葡萄糖的摄取[21]。
3 GLP-1和血管内皮
黏附分子在动脉粥样硬化病变的发生发展中起着重要作用。临床研究证明GLP-1能改善糖尿病合并稳定性冠心病患者的内皮功能紊乱[22]。Liu等[23]的体外研究表明利拉鲁肽能通过抑制TNF-α或高血糖诱导的纤溶酶原激活物抑制剂-1(PAI-1)和血管黏附分子(ICAM-1和VCAM-1)在内皮细胞的表达,改善2型糖尿病患者的内皮细胞功能紊乱,延缓或防止动脉硬化的发生。在此基础上,该研究团队从体内角度在ApoE-/-小鼠进一步证实了上述效应依赖GLP-1R[24]。Ishibashi等[25]和Hattori等[26]的研究结论与其相似。
动脉粥样硬化是一炎症过程,其前提是单核细胞黏附到内皮细胞。Arakawa等[27]对C57BL/6小鼠或ApoE-/-小鼠研究发现,exendin-4通过抑制TNF-α和单核细胞趋化蛋白-1的mRNA表达以及p65(NF-kB的组分)的核转位,抑制巨噬细胞的炎症反应,从而延缓动脉粥样硬化病变的发生发展,而且这种效应能被cAMP抑制剂MDL-12330A或蛋白激酶A特异抑制剂(PKA)PKI14-22逆转。Hattori等[26]研究表明,利拉鲁肽通过增加NO的合成、抑制NF-kB的活化以及部分通过激活AMPK对人脐静脉内皮细胞发挥抗炎作用,从而保护血管,而且这种保护作用是剂量依赖的。
内皮细胞的衰老在糖尿病和心血管病的发生发展中发挥了重要作用,决定其预后。Oeseburg等[28]体外研究结果表明,GLP-1能通过GLP-1R激活下游cAMP/PKA通路保护人脐静脉内皮细胞免受活性氧诱导的衰老,而抑制cAMP/PKA通路、阻止其保护作用。
4 GLP-1和血脂
血脂紊乱是心血管病的重要危险因素。糖尿病常合并血脂紊乱,主要表现为高甘油三酯、低高密度脂蛋白胆固醇以及小而密的LDL-c增多。Schwartz等[29]开展的一项随机、双盲、安慰剂对照的交叉研究,共入选35例研究对象,其中糖耐量受损20例、新发2型糖尿病15例,结果表明单纯皮下注射exenatide(10 μg)使餐后TG、apoB-48和CⅢ、剩余脂蛋白(RLP)胆固醇以及RLP-甘油三酯的升高水平明显降低,从而降低心血管风险。但该项研究观察时间短,仅持续到餐后8 h,不足以观察到exenatide的长期效应。为此,Bunck等[30]入选69例既往口服二甲双胍的2型糖尿病患者进行随机对照研究,exenatide持续治疗51周,疗程结束停药5周,结果表明长期的exenatide治疗明显降低了餐后血糖、甘油三酯、apo-B48、VLDL-c、游离脂肪酸(FFA)的水平。值得注意的是,在停药5周后,所有上述餐后检测指标均回归治疗前水平。这反映了exenatide长期治疗的必要性。
5 GLP-1和心率、血压
有研究表明GLP-1能使大鼠心率、血压增加[31],其机制为GLP-1及Exendin-4可通过交感神经系统调节心率和血压,其血管收缩作用也可通过目前尚未知的非自主调节机制介导[32-33]。但对盐敏感小鼠,GLP-1则表现出降压效应[34]。此外,GLP-1增加心输出量的同时不影响血压,原因可能是GLP-1扩张了外周血管[35]。这一推论和Ban等研究[18]证实GLP-1能扩张肠系膜动脉结论相仿。
但GLP-1对人血压的影响不同于鼠的研究结果。Bharucha等[36]对55例平均年龄31岁的健康受试者研究发现,静脉输注GLP-1(2.4pmol/(kg·min)持续10 min,接着以1.2pmol/(kg·min)持续55 min)对心率、血压无影响,考虑原因是剂量和持续时间问题。但早期进行的涉及10例健康受试者的随机、双盲、交叉研究结果显示快速腹壁注射GLP-1(80 nmol/ml)能一过性增加心率、血压,注射后50~60 min的心率、血压恢复到接近基线水平[37]。
6 GLP-1和心力衰竭
研究表明GLP-1能改善胰岛素的敏感性[38]。基础及临床研究均证实GLP-1能明显改善心功能,有效治疗慢性心力衰竭[6,35,39]; GLP-1对缺血再灌注导致的急性心功能不全患者以及冠脉球囊阻塞过程中因供应性心肌缺血所致的缺血性左室功能不全也有保护作用,并减轻心肌顿抑[5,40]。Liu等[41]证 明GLP-1[2.5或25 pmol/(kg·min)]或exenatide类似物AC3174[1.7或5 pmol/(kg·min)]皮下注射11周,能使经前降支结扎诱发心梗后2周的慢性心衰大鼠的心肌重塑,提高了生存率。
7 结语
GLP-1及其类似物的心血管保护作用已得到大量的基础及临床研究所证实。其具体机制主要涉及提高心肌葡萄糖摄取、改善内皮功能、扩张血管、抗炎、抗动脉粥样硬化、调节血脂、血压、心率等。值得注意的是,除Bunck等[30]进行的调节血脂研究持续近1年外,GLP-1及类似物在各项研究中的使用时间较短,不足以发现其对高危患者心血管的远期疗效。此外,目前已进行的临床研究大部分是回顾性的,少部分研究即使是前瞻性,但样本量少且是单中心,不足以反映真实人群的特点及疗效。因此,以上鼓舞人心的结论仍需通过大规模、多中心、前瞻、随机、双盲、对照研究来进一步证实。
1 Pratley R, Nauck M, Bailey T, et al. One year of liraglutide treatment offers sustained and more effective glycaemic control and weight reduction compared with sitagliptin, both in combination with metformin,in patients with type 2 diabetes: a randomised, parallel-group,open-label trial[J]. Int J Clin Pract, 2011, 65(4): 397-407.
2 Monami M, Cremasco F, Lamanna C, et al. Glucagon-like peptide-1 receptor agonists and cardiovascular events: a meta-analysis of randomized clinical trials[J]. Exp Diabetes Res, 2011 :215764.
3 Zander M, Madsbad S, Madsen JL, et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study[J].Lancet, 2002, 359(9309): 824-830.
4 Sokos GG, Nikolaidis LA, Mankad S, et al. Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure[J]. J Card Fail, 2006,12(9): 694-699.
5 Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagonlike peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion[J]. Circulation,2004, 109(8): 962-965.
6 Nikolaidis LA, Elahi D, Hentosz T, et al. Recombinant glucagonlike peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy[J]. Circulation, 2004, 110(8): 955-961.
7 Tomas E, Habener JF. Insulin-like actions of glucagon-like peptide-1 : a dual receptor hypothesis[J]. Trends Endocrinol Metab, 2010, 21(2): 59-67.
8 Abbott CR, Monteiro M, Small CJ, et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagalbrainstem-hypothalamic pathway[J]. Brain Res, 2005, 1044(1):127-131.
9 Kieffer TJ, Habener JF. The glucagon-like peptides[J]. Endocr Rev, 1999, 20(6): 876-913.
10 Abu-Hamdah R, Rabiee A, Meneilly GS, et al. Clinical review :The extrapancreatic effects of glucagon-like peptide-1 and related peptides[J]. J Clin Endocrinol Metab, 2009, 94(6): 1843-1852.
11 Bose AK, Mocanu MM, Carr RD, et al. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury[J].Diabetes, 2005, 54(1): 146-151.
12 Xie Y, Wang SX, Sha WW, et al. Effects and mechanism of glucagon-like peptide-1 on injury of rats cardiomyocytes induced by hypoxia-reoxygenation[J]. Chin Med J (Engl), 2008, 121(21):2134-2138.
13 Ravassa S, Zudaire A, Carr RD, et al. Antiapoptotic effects of GLP-1 in murine HL-1 cardiomyocytes[J]. Am J Physiol Heart Circ Physiol, 2011, 300(4): H1361-H1372.
14 Juhaszova M, Zorov DB, Yaniv Y, et al. Role of glycogen synthase kinase-3beta in cardioprotection[J]. Circ Res, 2009, 104(11):1240-1252.
15 Sonne DP, Engstrøm T, Treiman M. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemiareperfusion injury in rat heart[J]. Regul Pept, 2008, 146(1-3):243-249.
16 Piantadosi CA, Carraway MS, Babiker A, et al. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1[J]. Circ Res,2008, 103(11): 1232-1240.
17 Burkart EM, Sambandam N, Han X, et al. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart[J]. J Clin Invest, 2007, 117(12):3930-3939.
18 Ban K, Noyan-Ashraf MH, Hoefer J, et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways[J]. Circulation, 2008, 117(18): 2340-2350.
19 Vila Petroff MG, Egan JM, Wang X, et al. Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes[J]. Circ Res, 2001, 89(5): 445-452.
20 Nikolaidis LA, Elahi D, Shen YT, et al. Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy[J]. Am J Physiol Heart Circ Physiol, 2005, 289(6): H2401-H2408.
21 Bhashyam S, Fields AV, Patterson B, et al. Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinasemediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy[J]. Circ Heart Fail, 2010, 3(4): 512-521.
22 Nyström T, Gutniak MK, Zhang Q, et al. Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease[J]. Am J Physiol Endocrinol Metab,2004, 287(6): E1209-E1215.
23 Liu H, Dear AE, Knudsen LB, et al. A long-acting glucagon-like peptide-1 analogue attenuates induction of plasminogen activator inhibitor type-1 and vascular adhesion molecules[J]. J Endocrinol,2009, 201(1): 59-66.
24 Gaspari T, Liu H, Welungoda I, et al. A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion molecule expression in an ApoE-/- mouse model[J]. Diab Vasc Dis Res, 2011, 8(2): 117-124.
25 Ishibashi Y, Matsui T, Takeuchi M, et al. Glucagon-like peptide-1(GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression[J]. Biochem Biophys Res Commun, 2010, 391(3): 1405-1408.
26 Hattori Y, Jojima T, Tomizawa A, et al. A glucagon-like peptide-1(GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells[J].Diabetologia, 2010, 53(10):2256-2263.
27 Arakawa M, Mita T, Azuma K, et al. Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4[J].Diabetes, 2010, 59(4): 1030-1037.
28 Oeseburg H, de Boer RA, Buikema H, et al. Glucagon-like peptide 1 prevents reactive Oxygen species-induced endothelial cell senescence through the activation of protein kinase A[J]. Arterioscler Thromb Vasc Biol, 2010, 30(7): 1407-1414.
29 Schwartz EA, Koska J, Mullin MP, et al. Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus[J]. Atherosclerosis, 2010, 212(1): 217-222.
30 Bunck MC, Cornér A, Eliasson B, et al. One-year treatment with exenatide vs. insulin glargine : effects on postprandial glycemia, lipid profiles, and oxidative stress[J]. Atherosclerosis, 2010, 212(1):223-229.
31 Yamamoto H, Lee CE, Marcus JN, et al. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons[J]. J Clin Invest, 2002,110(1): 43-52.
32 Gil-Lozano M, Pérez-Tilve D, Alvarez-Crespo M, et al. GLP-1(7-36)-amide and Exendin-4 stimulate the HPA axis in rodents and humans[J]. Endocrinology, 2010, 151(6): 2629-2640.
33 Gardiner SM, March JE, Kemp PA, et al. Autonomic nervous system-dependent and -independent cardiovascular effects of exendin-4 infusion in conscious rats[J]. Br J Pharmacol, 2008,154(1): 60-71.
34 Hirata K, Kume S, Araki S, et al. Exendin-4 has an antihypertensive effect in salt-sensitive mice model[J]. Biochem Biophys Res Commun, 2009, 380(1): 44-49.
35 Poornima I, Brown SB, Bhashyam S, et al. Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failureprone rat[J]. Circ Heart Fail, 2008, 1(3): 153-160.
36 Bharucha AE, Charkoudian N, Andrews CN, et al. Effects of glucagon-like peptide-1, yohimbine, and nitrergic modulation on sympathetic and parasympathetic activity in humans[J]. Am J Physiol Regul Integr Comp Physiol, 2008, 295(3): R874-R880.
37 Edwards CM, Todd JF, Ghatei MA, et al. Subcutaneous glucagonlike peptide-1 (7-36) amide is insulinotropic and can cause hypoglycaemia in fasted healthy subjects[J]. Clin Sci (Lond),1998, 95(6): 719-724.
38 Ingelsson E, Sundström J, Arnlöv J, et al. Insulin resistance and risk of congestive heart failure[J]. JAMA, 2005, 14(10): 27-28.
39 Halbirk M, Nørrelund H, Møller N, et al. Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure[J]. Am J Physiol Heart Circ Physiol, 2010, 298(3): H1096-H1102.
40 Read PA, Hoole SP, White PA, et al. A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans[J].Circ Cardiovasc Interv, 2011, 4(3): 266-272.
41 Liu Q, Anderson C, Broyde A, et al. Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure[J].Cardiovasc Diabetol, 2010, 9 :76.