APP下载

2型糖尿病及其相关性状的全基因组关联研究

2013-01-26汤晓丽邓连瑞张鹏霞林加日徐劲松邓立彬南昌大学医学院江西南昌00

中国老年学杂志 2013年19期
关键词:空腹关联位点

汤晓丽 邓连瑞 张鹏霞 林加日 刘 扬 徐劲松 邓立彬 (南昌大学医学院,江西 南昌 00)

2型糖尿病(T2DM)是一种常见的以胰岛素抵抗(IR)和β细胞分泌缺陷为特征的复杂性疾病,占糖尿病群体的大多数(95%)。因遗传因素在T2DM的发生发展过程中起着重要的作用〔1〕,易感基因的发现一直是T2DM研究的热点。近年来,随着全基因组关联研究(GWAS)在复杂性状/疾病研究中的成功应用〔2〕,T2DM的遗传学研究也取得了一系列成果。本文从T2DM发病机制及相关性状两方面对这些易感基因/位点进行总结,以期了解遗传因素在糖尿发病过程中的作用机制。

1 GWAS鉴定的T2DM易感基因

在GWAS策略出现之前,连锁分析和候选基因关联研究是筛查疾病(或表型)有关易感基因/位点的主要方案。在连锁分析方面,T2DM的基因组扫描已在全球多个群体中进行,鉴定了一些与T2DM有关的数量性状基因座(QTLs)区域〔3〕。虽然后继的定位克隆的确发现了可靠的易感基因(如CAPN10〔4〕),但由于该方法存在不能精细定位等缺点限制了其在复杂疾病研究中的广泛应用。候选基因关联研究是筛查疾病易感基因的另一传统方法,前期T2DM候选基因多态性的研究为理解其发病机制提供了有益的线索(如 PPARG〔5〕、HNF1B〔6〕、WFS1〔7〕、TCF7L2〔8〕和 KCNJIl〔9〕),但候选基因的选择带有一定的盲目性。因此T2DM的遗传学筛查亟需一个分辨力高且不存在生物假设的全基因组筛查策略。近年来,得益于组学数据的积累及芯片技术的发展,GWAS已被广泛应用到T2DM的遗传学研究中,取得了一系列成果。从2007年至今,全球已发表31项针对T2DM的GWAS筛查〔10~40〕,共鉴定出97个 T2DM易感基因/位点,其中包括了多个传统方法确定的T2DM易感基因(如PPARG、KCNJ11、HNF1B、WFS1 和 TCF7L2等)。

同时,针对T2DM相关性状的GWAS研究也的确表明,T2DM易感基因的多态性可以影响正常人的餐后2 h血糖和糖化血红蛋白水平。其中,TCF7L2/rs12243326和腺苷酸环化酶5(ADCY5)/rs2877716既能增加空腹血糖,也能增加餐后2 h血糖水平〔41〕。而糖化血红蛋白水平是一项反映慢性血糖水平的稳定指标,多篇研究提示锚定蛋白1基因(ANK1)〔42〕、周期素依赖性激酶5调节蛋白1样蛋白1(CDKAL1)〔43〕、溶质载体家族 30(锌转运体)成员 5(SLC30A8)〔44〕和 TCF7L2〔45〕与糖化血红蛋白水平相关。这些比较不但印证了T2DM-GWAS筛查结果的可靠性,也进一步为易感基因多态性导致疾病的分子机制研究提供线索。

2 T2DM易感基因致病的功能背景

目前,虽然GWAS为T2DM易感基因的发现带来了突破性的进展,但众多易感基因/位点的功能及其导致T2DM的分子机制仍需深入探讨。

2.1 与β细胞胰岛素分泌相关的T2DM易感基因 β细胞的功能下降(胰岛素分泌受损)是T2DM的主要病理特征之一。在97个GWAS发现的T2DM易感基因中,目前认为与β细胞的胰岛素分泌功能有关的有20个。其中,12个基因的功能被一些零散的研究所证实(KCNJ11、造血表达同源异形盒(HHEX)、HNF1B、CDKAL1、WFS1、CDKN2A/B、锌指并列基因1(JAZF1)、电压门控性钾离子通道 KQT样家族成员1(KCNQ1)、细胞分裂周期蛋白/钙/钙调蛋白依赖蛋白激酶ID(CDC123/CAMK1D)、甲状腺腺瘤相关基因(THADA)、金属肽酶含血小板反应蛋白9(ADAMTS9)、四旋蛋白8/富含亮氨酸重复单位的G蛋白耦联受体5(TSPAN8/LGR5)〔46〕。而针对胰岛素分泌相关性状的 GWAS研究发现,GLIS家族锌指3(GLIS3)、C2 钙依 赖 域-含 蛋 白 4B(C2CD4B)、ADCY5、SLC30A8、TCF7L2、胰岛素样生长因子 2结合蛋白 2(IGF2BP2)、细胞周期蛋白依赖性激酶抑制剂2B(CDKN2B)和C2钙依赖域-含蛋白4B(C2CD4A)等8个T2D易感基因的多态性可影响胰岛素的分泌〔6~9,41~50〕。

空腹血糖水平(FBG)可反映β细胞的基础分泌能力。2010年,MAGIC(Meta-Analyses of Glucose and Insulin-related traits Consortium)进行了一项针对FBG的GWAS研究,发现了16个 FBG关联的基因/位点,其中5个(GLIS3、C2CD4B、ADCY5、SLC30A8和TCF7L2)为已知的T2DM易感基因〔48〕。后续的meta分析,不但印证了MAGIC的发现;还报道了20个新的与FBG关联的基因,其中包含2个已知的T2DM易感基因(IGF2BP2、CDKN2B)〔49〕。这些研究表明已知的 T2DM 易感基因中有 7个与 FBG关联,其中 4个基因 GLIS3、TCF7L2、SLC30A8和ADCY5得到了重复验证。另一方面,这些研究也提示多数的FBG关联基因可能仅与“生理”状态下血糖的变化相关,并不影响“病理”状态下血糖水平,但这一假设还需更深入的研究证实。

胰岛素原是胰岛素的前体,其水解过程是胰岛素产生和分泌的关键步骤。2011年,Strawbridge等〔47〕的 GWAS分析发现了8个与血Proinsulin水平关联的基因,其中有3个是T2DM的易感基因(TCF7L2、SLC30A8和C2CD4A/B)。有趣的是,这三个基因均被证实同空腹血糖性状关联,提示研究胰岛素的加工成熟过程可为理解T2DM病理生理机制提供新的见解。而后续的的功能学研究进一步证实 TCF7L2〔51〕和 SLC30A8〔52〕的确与胰岛素原转化为胰岛素有关;其中TCF7L2-rs7903146的TT基因型与胰岛素原转化能力降低及胰岛素分泌下降相关〔53〕,但具体机制尚不明确。

2.2 与胰岛素敏感性相关的T2DM易感基因 IR是T2DM的另一个病理特征,是指体内周围组织对胰岛素的敏感性降低。将前期针对IR衡量指标(HOMA-IR)及其他IR有关性状(空腹胰岛素水平、高胰岛素血症)的GWAS研究综合共发现11个T2DM的易感基因(WFS1、胰岛素受体底物1(IRS1)、TCF7L2、SLC30A8、锌指AN1型域3(ZFAND3)、萌芽同源物2(果蝇)(SPRY2)、肽酶D(PEPD)、神经突触素2(SYN2)、生长因子受体结合蛋白14(GRB14)、PPARG和CDKAL1)可影响胰岛素敏感性〔49,54〕。此外,非GWAS研究提示,其他一些基因与外周胰岛素敏感性或胰岛素抵抗相关,如ENPP1、ADIPOQ、AHSG、ADAMTS9、CAPN10、SREBF1、PPARGC1A 和 SHBG 等。其中 ADAMTS9已被GWAS研究证实是T2DM的易感基因〔48〕。

HOMA-IR是数值化衡量IR的常用指标〔55〕,在97个T2DM易感基因中已确定 6 个基因(WFS1、IRS1、TCF7L2、CDKAL1、SLC30A8和ZFAND3)与其相关〔54〕。空腹胰岛素水平是反映IR的另一常用指标,在血糖水平正常或升高的人群中,空腹胰岛素水平增高表明IR情况的存在。而另一些研究则提示,空腹胰岛素水平可识别糖尿病前期〔56〕。在97个GWAS确定的T2DM 的易感基因中,7 个基因 SPRY2、PEPD、IRS1、SYN2、GRB14、PPARG和TCF7L2与空腹胰岛素水平相关〔49〕。高胰岛素血症和IR紧密联系,被认为是IR的又一标志,是引发糖尿病患者大血管并发症(如心肌梗死、脑卒中、高血压、血脂紊乱、糖尿病肾病等糖尿病并发症)的主要原因。在GWAS确定的T2DM 的易感 基 因中,WFS1、IRS1、TCF7L2、CDKAL1 和SLC30A8等与高胰岛素血症相关〔54〕,这几个基因也与HOMAIR指标关联。

相关性状的研究发现IRS1和TCF7L2与HOMA-IR、空腹胰岛素及高胰岛素血症等三种性状均相关。其中IRS1为胰岛素受体底物1,可以与胰岛素受体结合并参与胰岛素介导的信号转导;其作为T2DM的易感基因,无论是从基因及蛋白的表达水平,还是变异导致氨基酸的替换方面都已被广泛的研究。如在脂肪细胞中IRS1基因及蛋白的低表达可预测胰岛素抵抗和 T2DM〔57〕。Almind 等〔58〕提出 IRS 的 Gly971Arg替换可能损害胰岛素刺激的信号传导,导致胰岛素抵抗。而Clausen等〔59〕报道,971Arg等位基因可联合肥胖因素,使胰岛素敏感性降低50%。而对于TCF7L2基因,目前多数研究证实其可以通过降低胰岛素分泌来增加T2DM的易感性;但另也有研究提示它可通过和胰岛素分泌不足两个环节共同起作用,具体机制尚待深入研究。

2.3 肥胖及相关体质人类学性状 肥胖是导致继发性IR的最重要的因素。在97个 T2D易感基因/位点中,4个基因SPRY2、IRS1、脂肪量和肥胖相关基因(FTO)和包含WW域的氧化还原酶(WWOX)与肥胖相关〔60〕。研究表明,FTO是通过肥胖增加 T2DM的易感性〔61〕。此外,5个 T2DM易感基因,GRB14、血管内皮生长因子(VEGFA)、ADAMTS9、FTO和 CDKAL1与肥胖相关的数量性状相关。如GRB14、VEGFA和ADAMTS9 与腰臀比相关〔62〕;FTO 与臀围、腰围和体重相关〔63,64〕;CDKAL1和FTO与身体质量指数(BMI)相关〔65〕。另外,FTO还与儿童早期极端肥胖〔33〕及皮下脂肪组织相关,ADAMTS9和IRS1与内脏脂肪组织/皮下脂肪组织的比例相关〔66〕。虽然肥胖与T2DM之间的关系已相对明确,但相当一部分重要的肥胖关联基因,仅与T2DM存在弱关联甚至不关联〔61〕,因此肥胖和糖尿病之间的相互关系还有待深入研究。

3 与其他性状关联的T2DM易感基因

同时,在T2DM的易感基因中,还有部分基因与其他一些性状关联:如FTO和TCF7L2与代谢综合征相关〔67〕;ADCY5与出生体重相关〔68〕;GRB14 与血压相关〔69〕;IRS1、CMIP、PEPD 和VEGFA与脂联素水平相关〔70〕等。其中T2DM易感基因与脂代谢紊乱的关联最具临床意义,因为相当一部分糖尿病人都伴有高脂血症。在97个T2DM的易感基因中,Kruppel样因子14(KLF14)、c-Maf诱导蛋白(CMIP)、IRS1和肝细胞核因子4α(HNF4A)与高密度胆固醇相关;肝细胞核因子1α(HNF1A)与低密度胆固醇水平相关;HNF4A和HNF1A与总胆固醇量相关;IRS1与甘油三酯相关〔71〕。

4 小结

综上所述,近年发现的T2DM易感基因/位点极大扩展了我们对T2DM遗传因素的认识,但GWAS的结果与传统研究尚存在一些出入,如CAPN10、SREBF1、SHBG和PPARGC1A等基因在GWAS筛查中并未得到验证。而在作用机制方面,虽然先前的一些研究认为IR是T2DM发病的重要分子机制;但筛查发现的多数易感基因与胰岛素分泌关联,提示β细胞的功能在T2DM中也发挥着重要作用。因此T2D的遗传学研究不但需要后续进一步基于大样本筛查易感基因,还需要对T2DM易感基因/位点的致病机制进行深入的功能学研究。

1 O'Rahilly S.Human genetics illuminates the paths to metabolic disease〔J〕.Nature,2009;462(7271):307-14.

2 Klein RJ,Zeiss C,Chew EY,et al.Complement factor H polymorphism in age-related macular degeneration〔J〕.Science,2005;308(5720):385-9.

3 Huang QY,Cheng MR,Ji SL.Linkage and association studies of the susceptibility genes for type 2 diabetes〔J〕.Yi Chuan Xue Bao,2006;33(7):573-89.

4 Horikawa Y,Oda N,Cox NJ,et al.Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus〔J〕.Nat Genet,2000;26(2):163-75.

5 Altshuler D,Hirschhorn JN,Klannemark M,et al.The common PPAR-gamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes〔J〕.Nat Genet,2000;26(1):76-80.

6 Bonnycastle LL,Willer CJ,Conneely KN,et al.Common variants in maturity-onset diabetes of the young genes contribute to risk of type 2 diabetes in Finns〔J〕.Diabetes,2006;55(9):2534-40.

7 Sandhu MS,Weedon MN,Fawcett KA,et al.Common variants inWFS1 confer risk of type 2 diabetes〔J〕.Nat Genet,2007;39(8):951-3.

8 Grant SF,Thorleifsson G,Reynisdottir I,et al.Variant of transcription factor 7-like 2(TCF7L2)gene confers risk of type 2 diabetes〔J〕.Nat Genet,2006;38(3):320-3.

9 Gloyn AL,Weedon MN,Owen KR,et al.Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2(KCNJ11)and SUR1(ABCC8)confirm that the KCNJ11 E23K variant is associated with type 2 diabetes〔J〕.Diabetes,2003;52(2):568-72.

10 Huang J,Ellinghaus D,Franke A,et al.1000 Genomes-based imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase 1 Data〔J〕.Eur J Hum Genet,2012;20(7):801-5.

11 Palmer ND,McDonough CW,Hicks PJ,et al.A genome-wide association search for type 2 diabetes genes in African Americans〔J〕.PLoS One,2012;7(1):e29202.

12 Cui B,Zhu X,Xu M,et al.A genome-wide association study confirms previously reported loci for type 2 diabetes in Han Chinese〔J〕.PLoS One,2011;6(7):e22353.

13 Sladek R,Rocheleau G,Rung J,et al.A genome-wide association study identifies novel risk loci for type 2 diabetes〔J〕.Nature,2007;22;445(7130):881-5.

14 Tsai FJ,Yang CF,Chen CC,et al.A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese〔J〕.PLoS Genet,2010;19;6(2):e1000847.

15 Yamauchi T,Hara K,Maeda S,et al.A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B〔J〕.Nat Genet,2010;42(10):864-8.

16 Scott LJ,Mohlke KL,Bonnycastle LL,et al.A genome-wide association study of type 2 diabetes in Finns detects multiple susce ptibility variants〔J〕.Science,2007;316(5829):1341-5.

17 Hanson RL,Bogardus C,Duggan D,et al.A search for variants associated with young-onset type 2 diabetes in American Indians in a 100K genotyping array〔J〕.Diabetes,2007;56(12):3045-52.

18 Imamura M,Maeda S,Yamauchi T,et al.A single-nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations〔J〕.Hum Mol Genet,2012;21(13):3042-9.

19 Steinthorsdottir V,Thorleifsson G,Reynisdottir I,et al.A variant in CDKAL1 influences insulin response and risk of type 2 diabetes〔J〕.Nat Genet,2007;39(6):770-5.

20 Timpson NJ,Lindgren CM,Weedon MN,et al.Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genomewide association data〔J〕.Diabetes,2009;58(2):505-10.

21 Takeuchi F,Serizawa M,Yamamoto K,et al.Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population〔J〕.Diabetes,2009;58(7):1690-9.

22 Welcome Trust Case Control Consortium.Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls〔J〕.Nature,2007;447(7145):661-78.

23 Zeggini E,Scott LJ,Saxena R,et al.Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes〔J〕.Nat Genet,2008;40(5):638-45.

24 Zeggini E,Weedon MN,Lindgren CM,et al.Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes〔J〕.Science,2007;316(5829):1336-41.

25 Unoki H,Takahashi A,Kawaguchi T,et al.SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations〔J〕.Nat Genet,2008;40(9):1098-102.

26 Perry JR,Voight BF,Yengo L,et al.Stratifying type 2 diabetes cases by BMI identifies genetic risk variants in LAMA1 and enrichment for risk variants in lean compared to obese cases〔J〕.PLoS Genet,.2012;8(5):e1002741.

27 Sim X,Ong RT,Suo C,et al.Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia〔J〕.PLoS Genet,2011;7(4):e1001363.

28 Voight BF,Scott LJ,Steinthorsdottir V,et al.Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis〔J〕.Nat Genet,2010;42(7):579-89.

29 Qi L,Cornelis MC,Kraft P,et al.Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes〔J〕.Hum Mol Genet,2010;19(13):2706-15.

30 Saxena R,Voight BF,Lyssenko V,et al.Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels〔J〕.Science,2007;316(5829):1331-6.

31 Below JE,Gamazon ER,Morrison JV,et al.Genome-wide association and meta-analysis in populations from Starr County,Texas,and Mexico City identify type 2 diabetes susceptibility loci and enrichment for expression quantitative trait loci in top signals〔J〕.Diabetologia,2011;54(8):2047-55.

32 Kooner JS,Saleheen D,Sim X,et al.Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci〔J〕.Nat Genet,2011;43(10):984-9.

33 Parra EJ,Below JE,Krithika S,et al.Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County,Texas〔J〕.Diabetologia,2011;54(8):2038-46.

34 Shu XO,Long J,Cai Q,et al.Identification of new genetic risk variants for type 2 diabetes〔J〕.PLoS Genet,2010;6(9).pii:e1001127.

35 Rampersaud E,Damcott CM,Fu M,et al.Identification of novel candidate genes for type 2 diabetes from a genome-wide association scan in the Old Order Amish:evidence for replication from diabetes-related quantitative traits and from independent populations〔J〕.Diabetes,2007;56(12):3053-62.

36 Hayes MG,Pluzhnikov A,Miyake K,et al.Identification of type 2 diabetes genes in Mexican Americans through genome-wide association studies〔J〕.Diabetes,2007;56(12):3033-44.

37 Cho YS,Chen CH,Hu C,et al.Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians〔J〕.Nat Genet,2011;44(1):67-72.

38 Salonen JT,Uimari P,Aalto JM,et al.Type 2 diabetes whole-genome association study in four populations:the DiaGen consortium〔J〕.Am J Hum Genet,2007;81(2):338-45.

39 Kho AN,Hayes MG,Rasmussen-Torvik L,et al.Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study〔J〕.J Am Med Inform Assoc,2012;19(2):212-8.

40 Liu Y,Zhou DZ,Zhang D,et al.Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus〔J〕.Diabetologia,2009;52(7):1315-21.

41 Saxena R,Hivert MF,Langenberg C,et al.Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge〔J〕.Nat Genet,2010;42(2):142-8.

42 Soranzo N,Sanna S,Wheeler E,et al.Common variants at 10 genomic loci influence hemoglobin A(C)levels via glycemic and nonglycemic pathways〔J〕.Diabetes,2010;59(12):3229-39.

43 Ryu J,Lee C.Association of glycosylated hemoglobin with the gene encoding CDKAL1 in the Korean Association Resource(KARE)study〔J〕.Hum Mutat,2012;33(4):655-9.

44 Paré G,Chasman DI,Parker AN,et al.Novel association of HK1 with glycated hemoglobin in a non-diabetic population:a genome-wide evaluation of 14,618 participants in the Women's Genome Health Study〔J〕.PLoS Genet,2008;4(12):e1000312.

45 Franklin CS,Aulchenko YS,Huffman JE,et al.The TCF7L2 diabetes risk variant is associated with HbA(C)levels:a genome-wide association meta-analysis〔J〕.Ann Hum Genet,2010;74(6):471-8.

46 Schafer SA,Machicao F,Fritsche A,et al.New type 2 diabetes risk genes provide new insights in insulin secretion mechanisms〔J〕.Diabetes Res Clin Pract,2011;93(Suppl 1):S9-24.

47 Strawbridge RJ,Dupuis J,Prokopenko I,et al.Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes〔J〕.Diabetes,2011;60(10):2624-34.

48 Dupuis J,Langenberg C,Prokopenko I,et al.New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk〔J〕.Nat Genet,2010;42(2):105-16.

49 Manning AK,Hivert MF,Scott RA,et al.A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance〔J〕.Nat Genet,2012;44(6):659-69.

50 Rees SD,Hydrie MZ,O'Hare JP,et al.Effects of 16 genetic variants on fasting glucose and type 2 diabetes in south asians:ADCY5 and GLIS3 variants may predispose to type 2 diabetes〔J〕.PLoS One,2011;6(9):e24710.

51 Stolerman ES,Manning AK,McAteer JB,et al.TCF7L2 variants are as sociated with increased proinsulin/insulin ratios but not obesity traits in the Framingham Heart Study〔J〕.Diabetologia,2009;52(4):614-20.

52 Kirchhoff K,Machicao F,Haupt A,et al.Polymorphisms in the TCF7L2,CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion〔J〕.Diabetologia,2008;51(4):597-601.

53 Gjesing AP,Kjems LL,Vestmar MA,et al.Carriers of the TCF7L2 rs7903146 TT genotype have elevated levels of plasma glucose,serum proinsulin and plasma gastric inhibitory polypeptide(GIP)during a meal test〔J〕.Diabetologia,2011;54(1):103-10.

54 Irvin MR,Wineinger NE,Rice TK,et al.Genome-wide detection of allele specific copy number variation associated with insulin resistance in African Americans from the Hyper GEN study〔J〕.PLoS One,2011;6(8):e24052.

55 Matthews DR,Hosker JP,Rudenski AS,et al.Homeostasis model assessment:insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man〔J〕.Diabetologia,1985;28(7):412-9.

56 Johnson JL,Duick DS,Chui MA,et al.Identifying prediabetes using fasting insulin levels〔J〕.Endocr Pract,2010;16(1):47-52.

57 Carvalho E,Jansson PA,Axelsen M,et al.Low cellular IRS 1 gene and protein expression predict insulin resistance and NIDDM〔J〕.FASEB J,1999;13(15):2173-8.

58 Almind K,Inoue G,Pedersen O,et al.A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling.Evidence from transfection studies〔J〕.J Clin Invest,1996;97(11):2569-75.

59 Clausen JO,Hansen T,Bjorbaek C,et al.Insulin resistance:interactions between obesity and a common variant of insulin receptor substrate-1〔J〕.Lancet,1995;346(8972):397-402.

60 Kilpelainen TO,Zillikens MC,Stancakova A,et al.Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile〔J〕.Nat Genet,2011;43(8):753-60.

61 Willer CJ,Speliotes EK,Loos RJ,et al.Six new loci associated with body mass index highlight a neuronal influence on body weight regulation〔J〕.Nat Genet,2009;41(1):25-34.

62 Heid IM,Jackson AU,Randall JC,et al.Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution〔J〕.Nat Genet,2010;42(11):949-60.

63 Scherag A,Dina C,Hinney A,et al.Two new Loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and german study groups〔J〕.PLoS Genet,2010;6(4):e1000916.

64 Scuteri A,Sanna S,Chen WM,et al.Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits〔J〕.PLoS Genet,2007;3(7):e115.

65 Okada Y,Kubo M,Ohmiya H,et al.Common variants at CDKAL1 and KLF9 are associated with body mass index in east Asian populations〔J〕.Nat Genet,2012;44(3):302-6.

66 Fox CS,Liu Y,White CC,et al.Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women〔J〕.PLoS Genet,2012;8(5):e1002695.

67 Zabaneh D,Balding DJ.A genome-wide association study of the metabolic syndrome in Indian Asian men〔J〕.PLoS One,2010;5(8):e11961.

68 Freathy RM,Mook-Kanamori DO,Sovio U,et al.Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight〔J〕.Nat Genet,2010;42(5):430-5.

69 Kato N,Takeuchi F,Tabara Y,et al.Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians〔J〕.Nat Genet,2011;43(6):531-8.

70 Dastani Z,Hivert MF,Timpson N,et al.Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits:a multi-ethnic meta-analysis of 45,891 individuals〔J〕.PLoS Genet,2012;8(3):e1002607.

71 Teslovich TM,Musunuru K,Smith AV,et al.Biological,clinical and population relevance of 95 loci for blood lipids〔J〕.Nature,2010;466(7307):707-13.

猜你喜欢

空腹关联位点
镍基单晶高温合金多组元置换的第一性原理研究
不惧于新,不困于形——一道函数“关联”题的剖析与拓展
采血为何要空腹
空腹运动,瘦得更快?
CLOCK基因rs4580704多态性位点与2型糖尿病和睡眠质量的相关性
基于网络公开测序数据的K326烟草线粒体基因组RNA编辑位点的鉴定与分析
“一带一路”递进,关联民生更紧
一种改进的多聚腺苷酸化位点提取方法
奇趣搭配
智趣