显然有v′(r)<0 (00 或者B<0时,有
(10)
这样式(11)的右边确定δk,n.
为了证明δk,n是最好的可能, 可考虑
[1] RUSCHEWEYH S T. Neighbourhoods of univalent functions[J].Proc Amer Math Soc,1981,8:598-601.
[2] SHEIL-SMALL T,SILVIA E M. Neighbourhoods of analytic functions[J].J Anal Math,1989,52:210-240.
[3] RAVICHANDRAN V. Starlike and convex functions with respect to conjugate points[J].Acta Math Acad Paedagog Nyhazi(N.S.),2004,20:31-37.
[4] WANG Zhigang,GAO Chunyi,YUAN Shaomou. On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points[J].J Math Anal Appl,2006,322:97-106.
[5] 刘志文, 刘名生. 某类解析函数子类的性质与特征 [J].华南师范大学学报:自然科学版,2010(3):11-14.
[6] FOURNIER R. A note on neighbourhoods of univalent functions[J].Proc Amer Math Soc,1983,87:117-120.
[7] RUSCHEWEYH S T,SHEIL-SMALL T. Hadamard products of Schicht function and the Pólya-Schoenberg conjecture[J].Comment Math Helv,1973,48:119-135.
[8] BROWN Johnny-E. Some sharp neighbourhoods of univalent functions[J].Tran Amer Math Soc,1985,287:475-482.
[9] FOURNIER R. On neighbourhoods of univalent convex functions[J].Rocky Mtn J Math,1986,16:579-589.
Keywords: univalent function; close-to-convex function; quasi-convex function; Hadamard product;k-symmetric points;δ-neighborhood
OntheNeighborhoodsofCertainSubclassesofClose-to-ConvexandQuasi-ConvexFunctionswithRespecttok-SymmetricPoints
LIU Mingsheng*, HUANG Yayuan
(School of Mathematics, South China Normal University, Guangzhou 510631, China)
2011-02-21
教育部高等学校博士学科点专项科研基金项目(20050574002)
*通讯作者,liumsh@scnu.edu.cn
1000-5463(2012)01-0014-05
O174.51
A
【责任编辑 庄晓琼】