基于Curve Fitting Toolbox的普朗克常数测定①
2012-08-21刘小利袁小燕
刘小利, 袁小燕
(长治医学院物理教研室,山西长治046000)
0 引言
在光电效应测定普朗克常数的实验中,人工作图随意性较大,得到的结果准确度不高.MATLAB曲线拟合工具箱[1]是一个可视化的图形界面,具有强大的图形拟合功能,适用于各种复杂模型的曲线拟合,可对实验数据进行很好的处理.可以通过cftool命令打开图形拟合工具箱.
实验采用西安理工大学研制的GD-4型普朗克常数测定仪,通过更换滤光片分别对五种不同波长(或频率f)的光测量光电流的I~U曲线,利用“拐点法”,得到不同频率下的截止电压Ua[2].再作-Ua~f图线,得到斜率k,即可求得普朗克常数h.
1 截止电压的测定
以波长为365.0nm(8.22×1014Hz)的入射光为例,在MATLAB主窗口键入实验得到的数据如下:> > U=[-4.00 -3.00 -2.50 -2.00 -1.50-1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.20];> > I=[-17.7 -17.5 -17.0 -16.5 -11.3 8.4 35 65 95.2 125.4 156.2 186.0 199];{×10-10}
>>cftool
横坐标U为电压,单位为V;纵坐标I为电流,单位为A.打开曲线拟合工具箱,单击“data”按钮,横坐标选择U,纵坐标选择I.设置数据后,单击“Fitting”按钮进行数据拟合设置,选择数据拟合类型为“cubic spline interpolant”.实验数据及拟合结果如图1所示.
图1 365nm入射光的伏安特性曲线
图2 拐点法确定截止电压(365nm)
由图1可知,数据拟合效果非常好.从拟合得到的曲线中,可以明显的看到,实验数据存在一个“抬头点”.在电压为[-4.00V -1.50V]这个区间内,电流变化很小,为阳极反向电流阶段.电压大于-1V后,电流急速上升,为光电流的主升段.为了用“拐点法”来确定截止电压的大小,单击面板中的“Exclude”按钮,将实验数据按照电压值分为[-4.00V -1.50V]和[-1.00V 2.20V]两个区间,并分别对这两个区间的数据进行线性拟合.分区间两次线性拟合后,得到两条直线,这两条直线的交点所对应的横坐标值即为截止电压Ua,如图2所示.
在图2中,分别对反向电流阶段和电流主升段进行线性拟合.两次线性拟合得到的两条直线的交点所对应的横坐标值即为截止电压Ua.把鼠标放置到该交点并单击鼠标左键,显示横坐标为-1.46V,即对于波长为365nm的入射光其截止电压Ua为 -1.46V.
用同样的方法,我们得到波长为404.7nm(7.41 ×1014Hz)、435.8nm(6.88 × 1014Hz)、546.1nm(5.49 ×1014Hz)、577.0 nm(5.20 ×1014Hz)的入射光所对应的截止电压分别为-1.10V,-0.90V,-0.41V,-0.25V.
2 普朗克常数的测定
在MATLAB主窗口键入如下内容
> > U=[0.25 0.41 0.90 1.10 1.46];
> >v=[5.20 5.49 6.88 7.41 8.22];
>>cftool
打开曲线拟合工具箱,单击“Data”按钮,以频率f为横坐标,﹣U为纵坐标,单击”Fitting”,拟合类型选择“linear”,得到截止电压与频率的关系如图3所示.
图3中横坐标为入射光频率f,单位为Hz;纵坐标为-U,单位为V.由数据拟合结果窗口,可以看到图3中显示的直线的斜率为k=p1=0.3879,如图4所示.
由于实际的入射光频率数量级为1014,则Ua/f= -0.3879 ×10-14V/Hz.
最后,通过计算可知,实验得到的普朗克常数为 h=(-0.388×10-14V/Hz)×(-1.602 ×10-19C)=6.22 ×10-34J·S
3 结论
MATLAB曲线拟合工具使用方便、直观,将数据分区间后分别进行曲线拟合的功能使得在测“拐点”数据时非常简捷、准确,利用这个界面,可以实现许多基本的曲线拟合.
图4 截止电压随频率的变化曲线斜率
[1]苏金明,张莲花,刘波等MATLAB工具箱应用[M].北京:电子工业出版社,2004:489-512.
[2]黄曙江.普朗克常数测定中不确定度的分析[J].计量与测试技术.2007,34(11):1 -2.