APP下载

大管的化学成分研究

2012-08-15黄永中罗雄明王建华

天然产物研究与开发 2012年9期
关键词:分子式波谱丙酮

黄永中,张 偲,黄 升,罗雄明*,王建华*

1重庆大学生物工程学院,重庆400044;2中国科学院南海海洋研究所,广州510301

大管Micromelum falcatum(Lour.)Tan.为芸香科(Rutaceae)小芸木属植物,在我国主要分布于海南岛、广东西南部、广西合浦至东兴一带和云南东南部。在中国传统医学中主要用于治疗创伤感染、风湿、咳嗽、发热等。文献报道其主要化学成分为香豆素、生物碱和苯丙酸类衍生物等[1-4]。本实验对大管的化学成分进行了较为系统的研究,分离得到12个化合物,包括6个香豆素和6个芳香类化合物。其中化合物1为新的天然产物;除5和6外,其余化合物均首次从该植物中分离得到。

1 仪器与材料

NMR谱用Bruker DRX-500MHz核磁共振波谱仪测定,TMS为内标;高效液相色谱仪为半制备型Waters 600(phenomenex OOG-4252-NO,250 mm×10 mm i.d.,5 μm);ESI-MS用岛津 API2000 LC/MS/ MS型液相色谱-质谱仪联用仪测定;凝胶Sephadex LH-20为Pharmacia公司产品;柱层析用硅胶(200~300目)为青岛海洋化工厂产品。高效液相用试剂为色谱纯,其他所用试剂均为分析纯。

大管茎皮于2009年采集于海南省三亚市,材料由中国科学院南海海洋研究所罗雄明助理研究员鉴定为 Micromelun falcatum(Lour.)Tan.,样品标本(No.DAJIAN020)存放于中国科学院南海海洋研究所标本馆。

2 提取和分离

干燥的大管约10 kg,用95%的乙醇浸提3次,每次7 d。提取液减压浓缩,用水分散,依次用石油醚、乙酸乙酯、正丁醇萃取。乙酸乙酯部分140 g,首先采用硅胶(200~300目)层析柱,以石油醚-丙酮(9∶1→1∶2)进行梯度洗脱,共接收120个流分,经TLC检测,合并成A-J共10个粗组分,其中A组分先过凝胶Sephadex LH-20(氯仿-甲醇1∶1)柱色谱,然后上硅胶柱(200~300目),氯仿-丙酮(60∶1)洗脱,所得部分再用凝胶Sephadex LH-20(甲醇)进一步纯化,得化合物5(114.8 mg)和6(26.5 mg);B组分先过凝胶Sephadex LH-20(氯仿-甲醇1∶1),然后上硅胶柱(200~300目),氯仿-丙酮(10∶1~2∶1)梯度洗脱,所得部分再过凝胶Sephadex LH-20(甲醇),然后用HPLC(MeOH/H2O 45∶55)纯化,得到化合物1(12.3 mg)、4(12.9 mg)、10(8.8 mg)、11 (6.2 mg);D组分先过凝胶Sephadex LH-20(氯仿-甲醇1∶1),然后上硅胶柱,氯仿-丙酮(3∶1~1∶1)梯度洗脱,所得部分用HPLC(MeOH/H2O 45∶55)纯化,得到化合物9(11.2 mg)。

正丁醇萃取物42.0 g溶于水中,过滤,得到水不溶部分10.0 g和水溶解部分30.0 g,后者过D101大孔吸附树脂,依次用水、20%、40%、60%、95%的乙醇洗脱,得五组馏分。经TLC检测,20%和40%乙醇洗脱得到的馏分斑点较相似,故将其合并进行分离纯化。水不溶部分10.0 g过硅胶(200~300目)柱分段,依次用石油醚-丙酮(6∶4)、氯仿-丙酮(20∶1)洗脱,所得部分再过凝胶 Sephadex LH-20 (氯仿-甲醇1∶1)进一步纯化,得到化合物3(36.3 mg)和12(12.0 mg);20%和40%部分的浸膏合并过硅胶(200~300目)柱分段,用氯仿-甲醇(8∶2)洗脱,所得部分过凝胶 Sephadex LH-20(氯仿-甲醇1∶1),再通过HPLC(MeOH/H2O 50∶50)纯化,得到化合物2(7.2 mg)、7(11.7 mg)和8(9.7 mg)。

3 结构鉴定

化合物1:黄色晶体,ESI-MS m/z:257[M+ Na]+,结合1H NMR谱和ESI-MS数据推断分子式为C12H10O5。1H NMR(500 MHz,DMSO-d6)δ:9.83 (1H,s,5-CHO),7.92(1H,d,J=9.5 Hz,H-4),6.83 (1H,s,H-8),6.36(1H,d,J=9.5Hz,H-3),3.82 (3H,s,6-OMe),3.77(3H,s,7-OMe)。13C NMR(125 MHz,DMSO-d6)δ:193.2(5-CHO),161.6(C-2),148.4(C-6),147.2(C-7),143.9(C-10),143.5(C-4),121.6(C-9),118.8(C-5),113.7(C-3),109.1 (C-8),56.5(6-OMe),56.2(7-OMe)。根据HMBC谱信号,从δH9.83(s,5-CHO)与δC118.8(C-5)、121.6(C-9)和148.4(C-6)相关,表明醛基在C-5上;从δH3.82(s,6-OMe)与δC148.4(C-6)相关,表明甲氧基在C-6上;从δH6.83(s,H-8)与143.9(C-10)147.2(C-7)和109.1(C-8)相关,表明氢信号在C-8上;从δH3.77(s,7-OMe)与δC147.2(C-7)相关,表明C-7上有甲氧基。以上波谱数据与文献对照基本一致[5],故鉴定化合物1为5-formyl-6,7-dimethoxycoumarin。

化合物2:白色粉末,ESI-MS m/z:377[M+ Na]+,结合1H NMR和13C NMR谱数据推断分子式为 C16H18O9。UV(CH3OH):λmax(log ε)226.4 (1.70),288.9(0.75),337.5(1.00)nm;1H NMR (500 MHz,CD3OD)δ:7.91(1H,d,J=9.0 Hz,H-4),7.21(1H,s,H-8),7.19(1H,s,H-5),6.32(1H,d,J =9.5 Hz,H-3),5.08(1H,d,J=7.5 Hz,H-1'),3.94(1H,d,J=2.5 Hz,H-5'),3.92(3H,s,7-OMe),3.72(1H,m,H-6'),3.55(3H,m,H-2',3',6'),3.43(1H,d,J=8.5 Hz,H-4');13C NMR(125 MHz,CD3OD)δ:163.6(C-2),151.8(C-7),150.7 (C-10),148.3(C-4),145.7(C-6),114.6(C-3),114.6(C-9),110.8(C-5),105.3(C-1'),102.1(C-8),78.4(C-5'),77.9(C-3'),74.8(C-2'),71.3(C-4'),62.5(C-6'),57.1(7-OMe)。根据HMBC谱信号,从δH7.19(s,H-5)与δC110.8(C-5)、114.6(C-9)和145.7(C-6)相关,表明氢在C-5上;从δH5.08 (1H,d,J=7.5 Hz,H-1')与δC145.7(C-6)相关,表明葡萄糖分子连接在C-6上;从δH7.21(s,H-8)与δC151.8(C-7),102.1(C-8)和150.7(C-10)相关,表明C-8上有氢;从δH3.92(s,7-OMe)与δC151.8 (C-7)相关,表明C-7上有甲基。以上波谱数据与文献对照基本一致[6],故鉴定化合物2为isoscoploletin-β-D-glucoside。

化合物3:黄色晶体,ESI-MS m/z:267[M+ Na]+,分子式为 C14H12O4。1H NMR(500 MHz,CDCl3)δ:7.80(1H,d,J=16.5 Hz,H-1'),7.65(2H,dd,J=3.0,9.5 Hz,H-4,H-5),6.84(1H,s,H-8),6.75(1H,d,J=16.5Hz,H-2'),6.30(1H,t,J=3.0,9.5Hz,H-3),3.97(3H,s,7-OMe),2.40(3H,s,H-4');13C NMR(125 MHz,CDCl3)δ:198.6(C-3'),161.1(C-2),160.5(C-7),157.0(C-10),143.1(C-4),136.8(C-1'),128.4(C-2'),127.6(C-5),121.1 (C-6),114.1(C-3),112.5(C-9),99.6(C-8),56.3 (7-OMe),27.4(C-4')。根据HMBC谱信号,从δH2.40(s,H-4')与δC198.6(C-3')和128.4(C-2')相关,从δH7.80(1H,d,J=16.5 Hz,H-1')与δC127.6 (C-5),121.1(C-6),160.5(C-7),198.6(C-3')和128.4(C-2')相关,表明丁烯支链在C-6上。以上波谱数据与文献对照基本一致[7],故鉴定化合物3为6-(trans-1-buten-3-only)-7-methoxycoumarin。

化合物4:黄色晶体,ESI-MS m/z:215[M+ Na]+,结合1H NMR和13C NMR谱数据推断分子式为C10H8O4。1H NMR(500 MHz,CD3OD)δ:7.86 (1H,d,J=9.0 Hz,H-4),7.11(1H,s,H-8),6.78 (1H,s,H-5),6.21(1H,d,J=9.0 Hz,H-3),3.92 (3H,s,7-OMe)。13C NMR(125 MHz,CD3OD)δ: 161.2(C-2),151.8(C-7),150.5(C-10),148.7(C-4),148.2(C-6),114.5(C-3),113.6(C-9),110.2 (C-5),102.5(C-8),56.4(7-OMe)。以上波谱数据与文献对照基本一致[8],故鉴定化合物4为异莨菪亭(6-羟基-7-甲氧基香豆素,isoscopoletin)。

化合物5:白色粉末,ESI-MS m/z:399[M+ Na]+,分子式为 C20H24O7。1H NMR(500 MHz,CDCl3)δ:7.56(1H,d,J=9.5Hz,H-4),7.35(1H,d,J=8.5Hz,H-5),6.81(1H,d,J=9.0Hz,H-6),6.16(1H,d,J=9.5 Hz,H-3),6.08(1H,m,H-1'),5.58(1H,d,J=5.5 Hz,H-2'),5.26(1H,dd,J= 2.5,3.0 Hz,H-4'),5.20(1H,dd,J=1.5,3.5 Hz,H-4'),4.67(1H,dd,J=2.0 Hz,H-5'),4.56(1H,dd,J=1.5,2.0 Hz,H-5'),3.85(3H,s,7-OMe),2.14(2H,d,J=8.0 Hz,H-2''),2.02(1H,m,H-3''),0.86(6H,d,J=7.0 Hz,3''-CH3);13C NMR (125 MHz,CDCl3)δ:172.8(C-1''),161.0(C-7),160.4(C-2),153.5(C-10),147.0(C-3'),143.7(C-4),129.2(C-5),114.6(C-8),113.1(C-3),113.0 (C-9),108.8(C-4'),108.0(C-6),77.2(C-2'),76.7(C-1'),71.2(C-5'),56.1(C-7-OMe),43.4(C-2''),25.8(C-3''),22.2(C-4''),22.2(C-5'')。以上波谱数据与文献对照基本一致[9],故鉴定化合物5为microfalcatin isovalerate。

化合物6:无色晶体,紫外灯下有蓝色荧光,ESIMS m/z:311[M+Na]+,分子式为 C15H12O6。1H NMR(500 MHz,CDCl3)δ:7.94(1H,d,J=9.5 Hz,H-4),7.67(1H,s,H-5),7.08(1H,s,H-6),6.26 (1H,d,J=9.5 Hz,H-3),5.55(1H,d,J=6.5 Hz,H-1'),4.03(1H,d,J=6.5 Hz,H-2'),3.92(3H,s,7-OMe),1.67(3H,s,H-5');13C NMR(125 MHz,CDCl3)δ:172.3(C-4'),160.4(C-2),159.9(C-7),156.6(C-10),142.9(C-4),127.6(C-5),120.2 (C-6),114.2(C-3),112.4(C-9),99.8(C-8),77.3(C-1'),63.5(C-2'),57.3(C-3'),56.5(7-OMe),11.2(C-5')。以上波谱数据与文献对照基本一致[10-12],故鉴定化合物6为小芸木宁micromelin。

化合物7:白色针晶,ESI-MS m/z:395[M+ Na]+,分子式为C17H24O9。UV(CH3OH):λmax(log ε)231.1(2.88),272.3(2.00),337.5(1.42) nm;1H NMR(500 MHz,CD3OD)δ:6.77(2H,s,H-2,6),6.56(1H,d,J=15.5Hz,H-7),6.35(1H,m,H-8),4.90(1H,s,H-1'),4.24(2H,dd,J=1.0,5.5Hz,H-9),3.88(6H,s,3-OMe,5-OMe),3.79 (1H,m,H-6'),3.68(1H,dd,J=5.0,12.0 Hz,H-6'),3.49(1H,m,H-2'),3.43(1H,m,H-3'),3.43 (1H,m,H-4'),3.23(1H,br m,H-5');13C NMR(125 MHz,CD3OD)δ:154.4(C-3,5),135.9(C-4),135.3 (C-1),131.3(C-7),130.1(C-8),105.5(C-2,6),105.4(C-1'),78.4(C-5'),77.9(C-3'),75.8(C-2'),71.4(C-4'),63.6(C-9),62.6(C-6'),57.1(3-OMe,5-OMe)。以上波谱数据与文献对照基本一致[13],故鉴定化合物7为丁香苷。

化合物 8:白色晶体,ESI-MS m/z:365[M+ Na]+,结合1H NMR和13C NMR谱数据推断分子式为 C16H22O8。UV(CH3OH):λmax(log ε)214.7 (1.45),257.0(1.20)nm;1H NMR(500 MHz,CD3OD)δ:7.20(1H,d,J=14.0 Hz,H-5),7.08 (1H,d,J=8.5 Hz,H-2),6.96(1H,dd,J=2.0,8.5 Hz,H-6),6.56(1H,d,J=16.0 Hz,H-7),6.30(1H,m,H-8),4.90(1H,s,H-1'),4.23(2H,dd,J=1.5,6.0 Hz,H-9),3.88(1H,m,H-6'),3.87(3H,s,3-OMe),3.70(1H,m,H-6'),3.50(2H,m,H-2',5'),3.43(2H,m,H-3',4');13C NMR(125 MHz,CD3OD) δ:150.9(C-4),147.7(C-3),133.7(C-1),131.3(C-7),128.9(C-8),120.8(C-6),118.0(C-5),111.4 (C-2),102.8(C-1'),78.3(C-3'),77.9(C-5'),75.0 (C-2'),71.4(C-4'),63.7(C-9),62.6(C-6'),56.8 (3-OMe)。以上波谱数据与文献对照基本一致[14],故鉴定化合物8为coniferin。

化合物9:褐色针状晶体,ESI-MS m/z:337[M+ Na]+,分子式为C14H18O8。UV(CH3OH):λmax(log ε)230.0(2.60),286.5(0.90)nm;1H NMR(500 MHz,CD3OD)δ:7.78(1H,t,J=1.0,7.5,8.0 Hz,H-7),7.55(1H,t,J=7.0,7.5 Hz,H-6),7.41(1H,d,J =8.5 Hz,H-4),7.14(1H,t,J=7.5,15.0 Hz,H-5),4.90(1H,d,J=7.5 Hz,H-1'),3.93(1H,m,H-6'),3.91(3H,s,1-OMe),3.74(1H,m,H-6'),3.54(1H,m,H-2'),3.52(1H,m,H-3'),3.50(1H,m,H-4'),3.44(1H,m,H-5');13C NMR(125 MHz,CD3OD)δ: 168.6(C-1),158.8(C-3),135.2(C-5),132.1(C-7),123.7(C-6),122.4(C-2),119.1(C-4),104.1 (C-1'),78.5(C-5'),77.6(C-3'),75.0(C-2'),71.3 (C-4'),62.6(C-6'),52.9(1-OMe)。以上波谱数据与文献对照基本一致[15],故鉴定化合物9为methyl 2-O-β-D-glucopyranosylbenzoate。

化合物10:褐色油状物,ESI-MS m/z:217[M+ Na]+,结合1H NMR谱和ESI-MS数据推断分子式为 C10H10O4。UV(CH3OH):λmax(log ε)215.9 (0.85),319.7(0.90)nm;1H NMR(500 MHz,CD3OD)δ:7.59(1H,d,J=15.5 Hz,H-1'),7.19 (1H,d,J=1.5Hz,H-3),7.07(1H,dd,J=1.5,1.5 Hz,H-6),6.82(1H,d,J=8.0 Hz,H-4),6.34(1H,d,J=16.0 Hz,H-2'),3.92(3H,s,5-OMe)。以上波谱数据与文献对照基本一致[16],故鉴定化合物10为2-hydroxy-5-methoxy-trans-cinnamic acid。

化合物11:白色粉末,ESI-MS m/z:205[M+ Na]+,结合1H NMR谱和ESI-MS数据推断分子式为C9H10O4。1H NMR(500 MHz,CDCl3)δ:9.82(1H,s,H-7),7.15(2H,s,H-2,6),6.09(1H,s,2-OH),3.97(6H,s,3-OMe,5-OMe)。以上波谱数据与文献对照基本一致[17],故鉴定化合物11为3,5-二甲氧基-4-羟基苯甲醛。

化合物12:褐色晶体,ESI-MS m/z:151[M+ H]+,结合1H NMR和13C NMR谱数据推断分子式为C10H14O。1H NMR(500 MHz,CDCl3)δ:7.15(1H,dd,J=1.5,1.5 Hz,H-6),7.06(1H,ddd,J=6.5,1.5 Hz,H-5),6.91(1H,t,J=8.0,15.5 Hz,H-4),6.75(1H,d,J=8.0 Hz,H-3),2.96(1H,m,H-1'),1.64(2H,m,H-2'),1.24(3H,d,J=7.0 Hz,H-4'),0.87(3H,t,J=7.5,15.0 Hz,H-3');13C NMR(125 MHz,CDCl3)δ:153.0(C-2),133.2(C-1),127.1(C-4),126.6(C-6),120.9(C-5),115.3(C-3),33.9(C-1'),29.8(C-2'),20.5(C-4'),12.2(C-3')。以上波谱数据与文献对照基本一致[18],故鉴定化合物12为邻仲丁基苯酚。

1 Kong YC,But PPH,Ng KH,et al.Micromelum:a key genus in the chemosystematics of the clauseneae.Biochem Syst Ecol,1988,16:485-489.

2 Kamperdick C,Phuong NM,Sung TV,et al.Coumarins and dihydrocinnamic acid derivatives from Micromelum falcatum.Phytochemistry,1999,52:1671-1676.

3 Luo XM,Qi SH,Yin H,et al.Micromelosides A-D,four new coumarins from the stem bark of Micromelum falcatum.Magn Reson chem,2009,47:1110-1114.

4 Luo XM,Qi SH,Yin H,et al.Alkaloids from the stem bark of Micromelum falcatum.Chem Pharm Bull,2009,57:600-602.5 Ishii H,Ishikawa T,Wada H,et al.Synthetic studies on naturally occurring coumarins.II.Synthesis of 6,7-dimethoxy-and 7,8-dimethoxy-5-[(E)-3-oxo-1-butenyl]coumarins.Chem Pharm Bull,1992,40:2614-2619.

6 Lin S(林生),Xiao YQ(肖永庆),Zhang QW(张启伟),et al.Studies on chemical constituents in bud of Artemisia scoparia(Ⅲ).China J Chin Mater Med(中国中药杂志),2004,29:429-431.

7 Talapatra SK,Mukhopadhay SK,Talapatre B.Minor coumarins of Boenninghausenia albiflora.Phytochemistry,1975,14: 836-837.

8 Wang Q(王琼),Zhang CF(张朝凤),Zhang M(张勉),et al.Study on chemical constituents in roots and rhizomes of Ligularia duciformsⅡ.China J Chin Mater Med(中国中药杂志),2008,33:1018-1020.

9 Ito C,Otsuka T,Ruangrungsi N,et al.Chemical constituents of Micromelum minutum.Isolation and structural elucidation of new coumarins.Chem Pharm Bull,2000,48:334-338.

10 Lamberto JA,Price JR,Redcliff AH.Micromelin,a new coumarin from Micromelum minutum(Forst.F.)seem(Family: Rutaceae).Aust J Chem,1967,20:973-979.

11 Geran RI,Greenberg NH,Macdonald MM,et al.Protocol for screening chemical agents and natural products against animal tumors and other biological systems.Cancer Chemother Rep,1972,3:1-103.

12 Cassady JM,Ojima N,Chang CJ,et al.An investigation of the antitumor activity of Micromelum integerrimum(Rutaceae).J Nat Prod,1979,42:274-278.

13 Kitajima J,Ishikawa T,Tanaka Y,et al.Water-soluble constituents of fennel.V.glycosides of aromatic compounds.Chem Pharm Bull,1998,46:1587-1590.

14 Han MH,Yang XW,Zhang M,et al.Phytochemical study of the rhizome of Pinellia ternate and quantification of phenylpropanoids in commercial pinellia tuber by RP-LC.Chromatographia,2006,64:647-653.

15 Ushiyama M,Furuya T.Glycosylation of phenolic compounds by root culture of Panax ginseng.Phytochemistry,1989,28: 3009-3013.

16 Vorovskii VV,Dubinin NS,Dranik LI,et al.Phenolic compounds in the above ground parts of Calligonum leucocladum;Nek.Probl.Farm.Nauki Prakt.,Mater.S'ezda Farm.Kaz.,1975,231-232.

17 Zhou HY(周惠燕),Zhang H(章辉),Li SM(李士敏).Chemical constituents from leaves of Phyllostachys pubescensⅠ.Chin J Chin Mater Med(中国中药杂志),2005,30: 1933-1934.

18 Tang ZL(唐子龙),Xu DL(许栋梁),Liu HW(刘汉文),et al.Synthesis and bioactivity studies on optically active fenobucarb.J Cent China Nor Univ,Nat Sci(华中师范大学学报自然科学版),2009,43:593-597.

猜你喜欢

分子式波谱丙酮
盐酸四环素中可交换氢和氢键的核磁共振波谱研究
制药工艺尾气中丙酮的膜法回收
有机物分子式确定方法探秘
基于CuO/ZnO异质结纳米花的薄膜型丙酮传感器研究
氯代丙酮合成方法的研究进展
琥珀酸美托洛尔的核磁共振波谱研究
有机物分子式、结构式的确定
波谱法在覆铜板及印制电路板研究中的应用
检疫性杂草假高粱与近缘植物种子的波谱鉴别方法
制药企业丙酮回收技术与应用