整函数及其微分多项式分担一个多项式
2012-07-05张国威陈昂
张国威,陈昂
(1.安阳师范学院数学与统计学院,河南 安阳 455000;2.教育部考试中心,北京 100084)
整函数及其微分多项式分担一个多项式
张国威1,陈昂2
(1.安阳师范学院数学与统计学院,河南 安阳 455000;2.教育部考试中心,北京 100084)
将Br¨uck猜想目前得到的几个结论进行了推广,研究了整函数及其微分多项式分担的一个多项式时的问题,并且得到了一个与之相关的复微分方程的解的性质.另外,还得到了一个定理,这个定理改进了一些已知的结果.
整函数;Nevanlinna理论;唯一性;分担值
1 引言及主要结果
本文中使用了Nevanlinna经典理论的一些基本符号和基本定理,关于这部分详细内容可见文献[1-4].令f(z)和g(z)为复平面ℂ上的两个非常数亚纯函数,并且令P(z)为一个多项式或者是一个有限数.用deg P(z)来定义多项式P(z)的级.用f(z)=P(z)⇒g(z)=P(z)来表示:当f(z)-P(z)=0时可推得g(z)-P(z)=0.若有f(z)=P(z)⇒g(z)=P(z)且g(z)=P(z)⇒f(z)=P(z),则将其表示为f(z)=P(z)⇔g(z)=P(z),并且称f(z)和g(z)分担P(z)IM(不计零点重数).如果f(z)-P(z)和g(z)-P(z)有相同的零点并且这些零点的重数相同,则称f(z)和g(z)分担P(z)CM(计零点重数)[1].更进一步,用记号σ(f), ν(f)来定义f(z)的级和超级.下面给出定义:
2 几个引理
3 定理1.3的证明
证明将分两种情况讨论.
情况1如果P(z)是个多项式.如果f不是个超越的整函数,由于方程(1)的解均为多项式,因此由方程(1),可知eP=c是个常数,则ν(f)=σ(eP)=0,易知定理1.3的结论成立.
[1] 仪洪勋,杨重骏.亚纯函数唯一性理论[M].北京:科学出版社,1995.
[2] Hayman W K. Meromorphic Functions[M]. Oxford: Clarendon Press, 1964.
[3] Laine I. Nevanlinna Theory and Complex Differential Equations[M]. Berlin: Walter de Gruyter, 1993.
Yang L Z, Zhang J L. Non-existence of meromorphic solutions of Fermat type functional equation[J]. Aequationes. Math., 2008,7:140-150.
[5] Br¨uck R. On entire functions which share one value CM with their first derivatives[J]. Results Math., 1996,30:21-24.
[6] Gundersen G G, Yang L Z. Entire functions that share one value with one or two of their derivatives[J]. J.Math. Anal. Appl., 1998,223:88-95.
[7] Li X M, Yi H X. An entire function and its derivative sharing a polynomial[J]. J. Math. Anal. Appl., 2007,330:66-79.
[8] Chen Y S, Zhang T D, Lu W R. Entire functions sharing a polynomial with their derivatives[J]. Complex Variables and Elliptic Equations, 2009,54(5):463-470.
[9] Chen Z X, Yang C C. Some further results on the zeros and growths of entire solutions of second order linear differential equation[J]. Kodai Math. J., 1999,22:273-285.
Entire functions that share one polynomial with their linear differential polynomials
Zhang Guowei1,Chen Ang2
(1. School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China; 2. National Education Examinations Authority, Beijing 100084, China)
In this paper,we improve some known results about Bruck's conjecture. We study the problem that entire function and its linear differential polynomial share a polynomial and obtain some properties of solution of the related complex differential equation. Moreover, we get a theorem which improves some known results.
entire functions,Nevan linna theory,uniqueness,share value
O174.5
A
1008-5513(2012)02-0196-05
2010-12-10.
河南省教育厅重点项目(12A 110002).
张国威(1981-),博士,讲师,研究方向:值分布论,复微分方程,复动力系统等.
2010 MSC:30D 35