浅析数学竞赛与初等数学教育的有机结合
2012-04-29高鹏
高鹏
摘 要现如今,在知识与经济迅猛发展的全球化潮流的推动下,越来越多的国家加入到了数学竞赛的参于与研讨中。旨在培养大量的在数学方面有兴趣、有才能的精英分子。因此,数学竞赛的兴办在很大程度上提高并加快了数学教育学科的发展。另一方面,数学竞赛活动也促使一大批有事业心兼具才能的数学教师,在辅导学生的同时充分提高了自身的科研能力和业务水平。从而,数学竞赛对学生智力水平的开发程度与教师在数学教学中能力的培养,构成了一个良性循环的有机体。所以,随着数学竞赛在数学教育中受重视程度的加深,也引发了全社会对其未来发展的关注与思考。
关键词数学竞赛;结合;辅导
一、国际数学奥林匹克的起源
国际中学生数学竞赛也被称为国际数学奥林匹克(International Mathematical Olympiad)简称IMO。数学竞赛在国际数学教育活动中的发展历史是十分悠久的。20世纪以来,随着举办中学生数学竞赛的高潮在全世界的兴起,为国际上的数学奥林匹克竞赛的诞生奠定了一定的客观基础。一年一度的IMO在每年的7月进行,由各个参赛国家或地区轮流主办。IMO已经成为世界所公认的最高水平的数学竞赛,在世界各国的数学教学中都得到了提倡和发展。经过多年学者们的研究,数学竞赛的质量也得到了逐步提高,要求考试题目的形式具有深刻的数学背景,并以最通俗有趣的语言将其表现出来。
二、数学奥林匹克竞赛在初等数学教育中的地位
奥林匹克数学完美地结合了初等数学与高等数学,主要任务是分别用初等数学的语言和方法来描述和解决高等数学的有关问题。随着数学奥林匹克竞赛与数学教育相互之间的不断深化和发展,数学教育工作者要客观恰当地评估数学奥林匹克在数学教育中所处的重要地位及产生的影响。概括地讲,奥林匹克数学活动的教育功能主要体现在以下四个层面:①有利于优质人才的及时发现和培养;②能激发青少年对于数学学习的兴趣,具有开发智力和潜在创造力的深远意义;③在很大程度上促进并推动了数学教育课程的改革和发展;④丰富了初等数学教育研究的内容和数学解题的思想理论。
三、数学竞赛与初等数学教育的有机结合
1.数学竞赛中体现的数学思想
我们在对任何一道奥林匹克数学竞赛题的研究过程中,会发现其思考方法与解题形式都蕴含了大量的数学思想方法。这就要求学生们在读题的基础之上能充分地理解出题者的意图及考察方向。因此,我们只有不断地去发现、思考、创造、领悟,得到的数学思想才能愈深愈奇。经过这样长期系统的训练,一点一滴地积累、领悟,才能具备超强的研究能力。
2.将数学竞赛结合到初等数学教育的实践中
首先,数学教师在具体的教学实践活动中不能只教给学生“这样解”的方法,还应引导学生去思考“怎样解”的思想,以及如何发散思维方式。目前,国家已研制出面向21世纪中学数学的课程新标准,作为国家教改后第一线主力军的中学数学教师而言,要善于发现每一位学生的优势,并制定出适合每一个人才的培养方案。将新的理念和教学模式用心地应用到每一堂数学课中。事实上,现阶段对数学教师的要求是在兼具教学与科研相结合的基础上,尽力发展每一位学生的个性与特长,这就是对我国教育事业的贡献。其次,将数学奥林匹克视作一种数学教育实验。那么在实际课堂教学中,教师应启迪学生自己去发现、领悟数学思维,培养学生的创造精神。并引导学生逐步深入到更高层次的知识中去,将被动接受化为主动探索达到教与学的高度统一。教师在教学过程中,应鼓励学生积极提出问题,并组织学生选好一个角度进行分组讨论。让学生发表意见,在强调重点和归纳结论时,尽量创造条件让学生自主发现,培养学生的独立性,而教师只需监督检查和点拨。另一方面,教师要注意边讲边问,将启发诱导贯穿始终,尽可能联系学生的生活实际,从最熟悉的地方引入激发解决问题的兴趣,从而使学生在不断地思考问题中,把全部精力都用到听课上来。最后,教师必须协调好数学竞赛辅导与正常课堂教学的关系。由于许多数学奥林匹克问题富有新颖性,如若强度过大地开展这一活动,也会产生消极的影响冲击正常的数学教学活动。这就在更高层面上要求教师具备将数学奥林匹克的普及教学与日常数学教学有机地结合起来的能力。下面举一个具体案例:排列组合问题中应用的抽屉原理就是数形结合教学法的一个体现。抽屉原理是证明命题存在性的有力工具。对所要讨论的问题,需分清哪个是苹果(元素)哪个是抽屉(集合),及量各是多少。具体应用时,依据复杂程度可分为以下六个层次:①若题目已知苹果和抽屉,只需进行观察区分;②注意原理的逆向应用,反求苹果数和抽屉数;③若题目已知苹果与抽屉二者之一,只需构造另一个;④若题目中苹果与抽屉均是未知时,需构造二者;⑤注意抽屉原理的多次应用;⑥综合应用抽屉原理时,需注意与某些数学思想方法的结合。因此,关键是教会学生利用题目中的已知条件构造出需要的“抽屉”和“苹果”的思维方式。构造法主要有以下五种方式:①利用同余项②利用不大于n的正整数③分割区间④分割图形⑤利用染色。在我们利用抽屉原理解决问题时,可选的方法途径多种多样并不只限于以上五种,因此,教师应注重引导学生灵活地应用此原理,根据题目的条件与要求,有的放矢地进行构造“苹果”与“抽屉”。
综上所述,数学奥林匹克在一定意义上是一种数学教育实验,指引并推动了中学数学的教学改革。在强调素质教育的今天,举办数学奥林匹克竞赛是为了更充分的发挥其重要的教育功能,从而使我国的数学教育体系更加完善,得以健全发展。
参考文献:
[1]江高文.数学新思维[M].武汉:华中师范大学出版社,2002.
[4]柳文武.数学思想录[M].南京:江苏教育出版社,1997.