APP下载

数学概念教学中思维能力培养初探

2012-04-29李祥

数学学习与研究 2012年7期
关键词:概念教学思维能力培养

李祥

【摘要】数学概念教学在整个教学过程中具有举足轻重的地位,如何在概念教学中培养学生的思维能力又是数学教学中的重中之重.本文将结合自己的教学实践提出一点自己的看法.

【关键词】概念教学;思维能力;培养;策略

数学概念是揭示现实世界空间形式与数量关系本质特征属性的思维方式,其本身具有严密性、抽象性、科学性和明确规定性.数学教学的本质是思维展示和发展的过程,在这个过程中,数学概念教学是一个重要环节,也是学生数学思维能力产生和发展的初始阶段.抓好这个环节可以培养学生良好的数学思维能力,进而在整个数学学习过程中达到事半功倍的效果.

一、重视概念教学,强化概念意识

数学概念是数学思维的指向灯,只有有了正确的数学概念意识才能使数学思维能力向良性方向发展.教师要重视概念教学,强化学生的概念意识.

我在给高一新生上的第一堂数学课中提出的第一个问题是:“什么是数学?”有些同学马上说:“是数的学问”.我提示道:“那数学就只研究数字不研究几何图形了吗?”有同学补充说:“数学是研究数与形的学问”.我告诉他们这还不是最好的回答,让他们在下面讨论一下到底什么是数学.最后有同学搬出新华字典给出数学的概念:研究现实世界的空间形式和数量关系的科学,包括算术、代数、几何、三角、微积分等.这次提问使学生明白了什么是数学以及数学研究的对象等,为下面数学的学习和研究指明了方向.也使学生认识到数学概念在数学学习中的基础和指向作用.

二、定向引导,深入研究,抓好概念教学的初始阶段,培养良好思维能力

人的思维是有一定惰性的,它常使人们对问题的理解停留在知识的表面,满足于一知半解.因此,在数学概念教学中,教师要善于定向引导,并且运用适当的方法(比如概念同化,概念迁移等),让学生由表及里,步步深入地学习某个概念,这样才能使学生的思维能力得以锻炼和优化.

例如,在教函数概念之前,我设计了一个引入部分:让学生来研究圆的面积与半径之间相互变化的规律.先给出几组半径的数据让学生计算圆的面积,进而让学生来求:当半径为x时,圆的面积y的值.这样使学生由原有的认知结构中的常量数学自然过渡到变量数学,在这个基础上让学生总结得出函数的初中定义:在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与之对应.那么说x是自变量,y是x的函数.然后,强调定义中的两个“一”即“每一”和“唯一”.此时抛出一个问题:用你所学知识给函数重新下一个定义.由于映射的概念刚刚学过,学生很容易得出函数的映射概念.由于是自己探索出来的概念,他们会有一种成就感,学习兴趣提高.

三、在概念教学过程中提高学生思维能力的策略

1闭故靖拍畋尘埃培养思维的主动性

在数学概念教学过程中向学生展示概念产生的背景,激发学生的好奇心,达到让学生主动思考的目的,从而培养思维的主动性.

我在讲述对数概念时,先讲述对数的起源.对数起源于想把大数的相乘问题转化为加减问题的思想.我在黑板上写出两个数列,前一个为等差数列,后一个为等比数列,如:

…-4,-3,-2,-10,1,2,3,4,5,6,7,8…

…132,116,14,12,1,2,4,8,16,32,64,128,256…

要计算8×16,只需在下一列数中找到8与16,在上一列数中找到其对应的数3和4,3+4=7,在上面一列数中找到7,7在下一列数中所对应的数为128,则8×16的值为128.再如,求162,可转化为寻找16所对应的数为4,4+4=8,则162的值为256.这种特殊的算法一下子引起学生的好奇心,激发起他们对对数学习的欲望.从教学反馈的效果来看:大多数学生能够较好较快地掌握对数概念,并且在学习对数运算性质logaM·N=logaM+logaN时都能较快理解并接受.

2贝瓷枨笾情境,培养思维的敏捷性

数学概念一般比较枯燥乏味.如果只是照本宣科地讲述,学生容易失去兴趣,进而影响概念的理解和记忆.在讲述概念之前若能够创设一个求知情境,则不光是教学效果非同一般,而且能够培养学生思维的敏捷性.

在讲述指数函数的概念时,我给学生提出“杨白劳的债务”问题:杨白劳3月初借黄世仁2元钱,月底要还4元钱,月底无法偿还,请求延期.4月底要还8元钱,仍无法偿还,又请求延期.如此下去,年关时要还多少钱?学生答:29=512元.我又问:x月后要还的钱数y应该多少呢?学生答:y=2x元(x∈N*).此时,我说,若把这里的“2”推广到a(a>0,且a≠1),定义域推广到R,则可得到指数函数的概念.学生很快理解了我的意思,自己总结得出指数函数的概念.从他们喜悦的表情可以看出:这个概念他们已经理解并接受了.

3本确表述,细致剖析新概念,培养思维的缜密性

思维的缜密性表现在抓住概念的本质特征,对概念的内涵与外延的关系全面深刻地理解,对数学知识结构的严密性和科学性能够充分认识.因此,当概念形成后,要求学生能够准确地表述概念.在这个基础上,对新概念进行剖析,使学生对新概念有更加深入、细致的了解.从而达到培养他们思维缜密性的目的.

例如,在讲述三角函数的概念时,对六个基本三角函数的定义,以正弦函数sinα=yr为例进行如下分析:它本质上是一个比值,是角α的终边上任意一点的纵坐标y与这一点到原点的距离r的比值;由于|y|≤r,所以这个比值不超过1;与点在终边上的位置无关;这个比值的大小随α的变化而变化,当α取某个确定的值,比值有唯一确定的值与之对应.经过对正弦函数概念的本质属性分析之后,指出角的终边上的任意点P(x,y)一经确定,就涉及到x,y,r这三个量.任取两个组成比值,共有六组,对应着六个基本三角函数.这样对三角函数的内涵和外延就都揭示得十分清楚了.

【参考文献】

[1]田万海.数学教育学.杭州:浙江教育出版社.

[2]顾援.概念的教学.山西大学师范学院学报,2001(10).

[3]郭思乐,刘远图.中学数学教学.北京:光明日报社出版社.

猜你喜欢

概念教学思维能力培养
培养思维能力
培养思维能力
刍议概念教学在小学数学教学中的应用价值
对初中数学课程概念教学的求真与探微
高中数学逻辑思维能力的培养
浅析新形势下航空计量人才培养
漫谈小学数学的概念教学
培养学生社会适应能力的策略研究
创新人才培养理论研究现状及未来研究方向