APP下载

10kW三相光伏并网逆变器主电路参数设计

2012-03-16易映萍

关键词:变流器电感滤波器

夏 耘,易映萍

(上海理工大学 光电信息与计算机工程学院,上海 200093)

10kW三相光伏并网逆变器主电路参数设计

夏 耘,易映萍

(上海理工大学 光电信息与计算机工程学院,上海 200093)

以10kW三相光伏并网逆变器为研究对象,阐述了并网逆变器的系统结构和工作原理,并根据其输入输出特性对逆变器主电路参数进行设计.最后,在MATLAB/SIMULINK环境下进行了系统的建模与仿真,通过FFT分析了逆变器输出电流和并网电流,仿真和实验验证了主电路参数设计的正确性.

三相光伏逆变器;主电路参数设计;并网;MATLAB/SIMULINK

随着当今经济的快速发展,人们对能源的需求日益增长.然而像煤、石油、天然气等不可再生能源的储量已经十分有限,同时这些能源对环境也产生了严重的污染.太阳能、风能等作为绿色无污染的新能源日益受到人们的青睐.新能源发电并网是必然趋势,而光伏并网逆变器是发电并网系统的关键设备,能将光伏阵列所输出的直流电变换成交流电送入电网.

在光伏发电系统中,并网逆变器是发电系统和电网的接口设备,因此,它的控制可靠性将影响整个设备的安全性和稳定性.三相光伏并网系统由以下几个部分组成:逆变器主电路、保护电路、检测电路、控制电路、驱动电路等,而逆变器主电路承担着转换、传递能量的任务,是整个逆变器设计的基础.主电路必须安全、可靠,其各部分参数的设计应该以极限工作条件为依据,并保留充分的裕量,保证所选择的器件工作在安全区域[1].

1 并网逆变器系统结构和基本原理

本文采用了单级式带隔离变压器的拓扑结构,如图1所示.为了提高滤波效果,采用LCL滤波器代替普通L滤波器.工频隔离变压器变比为400∶270,既可以实现电能隔离保证设备和人员安全,又可以降低直流母线并网电压.这种拓扑结构可以减少硬件成本,因此易于实现产品商业化.此种拓扑结构采用双环控制策略,内环为交流电流环,目的为控制电流从直流到交流的逆变,并能到达高品质因数;外环为直流电压环,目的是稳定直流侧母线电压,最大功率跟踪确定的电压值为直流母线电压给定的指令值.

图1 10kW光伏并网逆变器拓扑结构

由于三相PWM变流器的拓扑结构与逆变器的拓扑结构是完全一致的,为此可以借用PWM变流器的工作模式来分析逆变器的工作方式.通过对交流侧电流的控制可以保证变流器工作在不同的运行状态,从而实现变流器在四象限运行,工作原理的分析如图2所示.

图2 变流器四象限运行状态

图2中:E为交流电网电动势矢量;U为交流侧电压矢量;UL为交流侧电感电压矢量;I为交流侧电流矢量.图2(a)是纯电感特性运行,图2(b)是单位功率因数整流运行,此时电流方向与电网电压方向一致;图2(c)是纯电容运行,图2(d)单位功率逆变器运行,此时电流方向与电网电压方向反向.当变流器作为逆变器运行时,电压矢量U端点在圆轨迹CDA上运动,此时PWM变流器便处在于有源逆变状态;当电压矢量U 在CD 弧段上运行时,PWM变流器向电网传送有功功率及容性无功功率,电能将从PWM变流器直流侧传输至电网;当电压矢量U在DA弧段运行时,PWM变流器向电网传输有功功率及感性无功功率,同样电能将从PWM变流器直流侧传输至电网;当PWM变流器运行至D点时,便可实现单位功率因数有源逆变控制.为了减小对电网的影响,并达到单位功率因素控制,当逆变器从电网吸收能量时,其运行于整流工作状态,电网电压和电流同相.当逆变器向电网输入电能时,其电网电流和电流反相,这是光伏并网逆变器运行的理想状态,也是光伏并网逆变器控制系统要努力达到的控制目标[2].

2 三相并网逆变器主电路参数设计

该并网逆变器的输入电压范围为400~820V,功率因数不小于99%,额定输出功率为10kW.主电路主要由光伏阵列、直流母线电容、三相逆变桥、LCL滤波器、三相隔离变压器等组成.以下分别讨论IGBT的选型,直流母线电容的确定,以及滤波器电容、电感的设计[3].

2.1 IGBT的选取

IGBT的选取需要考虑三方面的因素:开关速度、额定电压和额定电流.根据10kW光伏逆变器的技术要求,直流母线电压最高为850V,考虑到关断尖峰可能要达到1.2倍,因此IGBT耐压要超过850*1.2=1020V.系统的额定功率为10kW,考虑到1.1倍的过载能力,流过IGBT的最大电流为

其中因此流过IGBT峰值电流为

结合目前主要的IGBT规格以及供货周期、价格等因素综合选取型号.最后IGBT的型号选定为FF200R12KE3(英飞凌),主要技术参数为:最大电流200A,耐压1200V.

2.2 直流母线电容的确定

直流电容对逆变器的谐波、功率因素、直流母线电压波动等有重要影响,因此直流母线电压和母线电容参数的确定至关重要.直流母线电压既要满足电网电压的要求,还要通过控制使流过LCL滤波器的电流为正弦波.从电源的控制角度来说,直流电压过低不仅会导致逆变出的交流侧电流产生严重畸变,甚至达不到跟随指定电压的目的;直流电压过高一方面会提高元器件的耐压等级,提高了系统硬件成本,同时系统的可靠性因此会降低.一般而言,为达到电压环控制的快速响应,直流母线电容应选取的尽量小;而为达到电压环控制的抗扰性,直流母线电容应选取的尽量大,防止在有负载扰动时直流电压值的动态降落.

逆变器输出相电压的有效值为:

考虑到电网最大10%的电压波动时:

当三相电压不平衡时,由于负序分量的作用,并网逆变器直流母线侧电容上能量将以2ω波动,则:

式(5)中:Vm为电网电压峰值,In为电网电流峰值,ω为电网角频率,θ为初始相角.考虑5%直流母线电压纹波,同时直流电压为400V,则电容的值为:

根据参数要求、电容厂家、供货周期等,本文选取Nichicon(尼吉康)两个4700μF的电解电容串联的方式,电容型号为LNW2W472MSEH,电容参数为耐压450V,容值为4700μF.

2.3 滤波器设计

随着并网光伏发电技术的发展,大功率并网发电已经成为一种必然趋势.由于容量通常较大,为了降低开关损坏和其他损耗,开关频率一般比较低.在大功率逆变器中一般采用LCL滤波器,LCL滤波器不仅可以减少体积、节约成本,而且具有更好滤除高频谐波的能力.本文采用LCL滤波器,首先根据电感的允许电压降确定电感的上限值,然后依据电路中的纹波电流指标进而确定电感的下限值,根据计算结果综合考虑参数的选取.

在SVPWM调制下,直流母线的电压利用率为1,所以此时逆变器交流侧线电压峰值就是Udc,此时可以得到L的上限值:

式中L为电网侧和网侧逆变器的总电感;Emp为电网相电压基波有效值和峰值;Udc为直流母线电压;I,Imp为交流侧电流矢量.

电路中相电流的最大电流纹波为:

由此得到电感的下限:

电感值的大小会影响电流性能的好坏,电感值越小电流的跟踪能力和系统的响应就会得到提高,电感的值越大,电抗器滤除高次谐波的能力会更好.为了使系统稳定,根据常规一般选取L1=2L2.根据上述计算,选定滤波器为L1=0.12mH,L2=0.06mH.

以下介绍滤波电容的选取,由于滤波器电容的使用,会引起无功功率的增加从而会降低功率因数.为了保证系统的高功率因数输出,选取额定功率的5%作为电容吸收无功功率的上限值,可得出选取电容的标准为C≤5%Cb.

综合考虑,本文选取30μF的交流滤波电容.为防止发生滤波器谐振,取10f≤fs≤0.5fsw,根据这个约束条件来核算选取的参数是否合适,fs的计算公式为(11),带入相关参数得fs=1434Hz,满足设计要求.

3 仿真与实验分析

根据光伏并网逆变器的系统结构,采用MATLAB仿真工具搭建了仿真模型如图3所示.电池板模型的开路电压为620V,短路电流为25A.根据电池板模型的输出特性曲线,电池板在最大输出功率点处的电压为510V,电流为22A.直流母线电容取2350μF,LCL型滤波器中电网侧电感L2取0.6 mH,Cu取30μF,逆变器侧电感L1取1.2mH,开关频率为4.2kHz.在实际电路中,逆变器输出电流通过工频变压器并网,变比为270∶400.在仿真模型中,为简化分析,将电网线电压的峰值设为270V,相当于隔离变压器并网之前的电压[4-5].

图3 光伏逆变系统仿真模型

并网时A相输出电流和电网电压波形如图4所示,由图可知:交流侧的输出电流接近理想的正弦波,并网逆变器输出电流与电网电压同频同相,将能量回馈到了电网.达到了单位功率因数运行的效果.

图4 并网时A相输出电流和电压波形图

图5为逆变器输出电流FFT分析,以验证LCL滤波器的滤波效果.从波形分析可以看出,通过双闭环控制,输出谐波THD值含量为4.51%,低于5%的国家标准.在1000~2000Hz频率段,由于LCL滤波器的谐振作用,THD有所增大,但对于2000 Hz以上的高次谐波有很好的抑制效果.仿真结果表明,该光伏并网逆变器主电路设计符合逆变器并网要求,是光伏并网逆变器主电路设计的一种可行方案.

图5 逆变器输出电流THD分析

为验证光伏并网逆变器的主电路设计符合逆变器并网要求,进行了并网试验,试验波形如图6所示.图6中CH3为A相电网电压(CH3进行了反相),CH2为A相电网电流,由于前端调压器容量有限,长时间运行时有功指令Id给定-11A,此时并网功率为

图6 并网稳态波形

此时测得并网电流THD=5.3%,达到了预期目标,成功实现并网.

4 结 论

本文通过对10kW光伏并网系统进行了MATLAB建模和仿真,分析了逆变器主电路的工作原理,并推导出主电路元件参数的计算公式.在理论分析和推导计算公式的基础上,结合主电路实际工作的特点,合理的选择了各元件的参数.仿真和实验结果表明,根据计算结果选择元件搭建的主电路工作稳定,符合要求,可作为工程应用的参考.

[1]赵 为.太阳能光伏并网发电系统的研究[D].合肥:合肥工业大学硕士论文,2003.

[2]王 飞,余世杰,苏建徽,等.光伏并网发电系统的研究及实现[J].太阳能学报,2006,26(5):605-608.

[3]董 密,罗 安.光伏并网发电系统中逆变器的设计与控制方法[J].南京:电力系统自动化,2006,30(20):97-102.

[4]张卫平.开关变换器的建模与控制[M].北京:中国电力出版社,2006:5-56.

[5]茆美琴,余世杰,苏建徽.带有MPPT功能的光伏阵列Matlab通用仿真模型[J].系统仿真学报,2005,17(5):1248-1251.

The Main Circuit Parameter Design of 10 kW Three-phase Photovoltaic Grid-connected Inverter

XIA-Yun,YI Ying-ping
(School of Optical-electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)

This paper elaborates the system structure and working principle of 10kW three-phase photovoltaic grid-connected inverter and designs the main circuit parameters based on the input/output characteristics of the inverter.In addition,it analyses the output current and grid current of the inverter through FFT in the modeling and simulation of system based on MATLAB/SIMULINK environment.The simulation and experiment results have verified the correctness of design for the main circuit parameters.

Three-phase photovoltaic inverter;main circuit parameters design;grid-connected;MATLAB/SIMULINK

TM464

A

1671-119X(2012)03-0009-04

2012-03-26

国家高新技术研究发展863计划.资助项目(2012AA050206)

夏 耘(1959-),女,工程师,研究方向:电工与电子应用.

猜你喜欢

变流器电感滤波器
基于无扰滤波器和AED-ADT的无扰切换控制
从滤波器理解卷积
开关电源EMI滤波器的应用方法探讨
基于NCP1608B的PFC电感设计
中压一体化储能变流器的设计
基于背靠背变流器的并网控制研究
基于TMS320C6678的SAR方位向预滤波器的并行实现
隔离型开关电感准Z源逆变器
改进PR控制在直驱风机变流器中的应用
电流型PWM变流器在串级调速中的应用