APP下载

积分方程保奇性多尺度快速Galerkin方法离散矩阵性态分析

2011-12-21

韩山师范学院学报 2011年6期
关键词:性态宜宾尺度

陈 杰

(宜宾学院数学学院,四川宜宾 644000)

积分方程保奇性多尺度快速Galerkin方法离散矩阵性态分析

陈 杰

(宜宾学院数学学院,四川宜宾 644000)

针对采用保奇性方法求解具有非光滑解的积分方程时所得到的离散线性方程组,分析了该方程组系数矩阵的各种性态,包括元素值估计、分块矩阵范数估计等,并最终得到了系数矩阵条件数的有界性估计.

积分方程;系数矩阵;范数;条件数

具有非光滑解的积分方程来自于许多实际物理问题,如位势问题、Dirichlet问题以及辐射平衡的数学问题等[1-3].对它的求解有乘积-积分法、Galerkin方法和配置法等,它们都需要针对解的特性来构造网格剖分;而采用多尺度保奇性方法求解此类问题能够保持解的物理特性,还能进行快速求解[4,5],因此更贴近实际应用.本文主要研究多尺度保奇性Galerkin方法求解此类问题时所得到的离散系数矩阵的性态,它对于最终如何求解此线性方程组有着重要的意义[6].

1 保奇性Galerkin方法

2 多尺度小波基底

3 方程离散分块格式

4 离散矩阵性态分析

[1]ATKINSON K.The numerical solution of Fredholm integral equations of the second kind with singular kernels[J].Numer.Math.,1972,19:248-259.

[2]BURTON A J MILLER G F.The application of integral equation methods to the numerical solution of some exterior boundary-value problems[J].Proc.roy.Soc.Lond.(Series A).1971,323:201-210.

[3]JASWON M A.Integral equation methods in potential theory.I[J].Proc.roy.Soc.Lond.(Series A).1963,275:23-32.

[4]CHEN JIE,CHEN ZHONGYING,ZHANG YONGDONG.Fast singularity preserving methods for integral equations with non-smooth solutions[J].Journal of Integral Equations and Application,to appear.

[5]CAO Y,XU Y.Singularity preserving Galerkin methods for weakly singular Fredholm integral equations[J].J.Integral Equations Appl.,1994,6:303-333.

[6]张世禄,何洪英.计算方法[M].电子工业出版社,2010.

[7]GRAHAN I.Singulary expansions for the solution of second kind Fredholm integral equations with weakly singular convolution kernels[J].J.Integral Equations.,1982,4:1-30.

[8]张永东,陈仲英.弱奇性积分方程的保奇性Petrov-Galerkin方法[J].中山大学学报(自然科学版),2001,40:9-12.

[9]CHEN Z,MICCHELLI C A,XU Y.The Petrov-Galerkin methods for second kind integral equations II:Multiwavelet scheme[J].Adv.Comput.Math.,1997,7:199-233.

[10]CHEN Z,MICCHELLI C A,XU Y.Discrete wavelet Petrov-Galerkin methods[J].Adv.Comput.Math.,2002,16:1-28.

[11]CHEN Z,MICCHELLI C A,XU Y.Fast collocation method for second kind integral equations[J].SIAM J.Numer.Anal.,2002,40:344-375.

[12]MICCHELLI C A,XU Y.Using the matrix refinement equation for the construction of wavelets on invariant sets[J].Appl.Comput.harmon.Anal.,1994,1:391-401.

[13]MICCHELLI C A,XU Y CAO Y.Wavelet Galerkin methods for second kind integral equations[J].J.Comput.Appl.Math.,1997,86:251-270.

[14]WEI Y M,XU,W,QIAO S Z,et al.Componentwise condition numbers for generalized matrix inversion and linear least squares[J].Numerical Mathematics,A Journal of Chinese Universities,2005,14(3):277-286.

Analysis of the Discrete Matrix Derived from the Fast Singularity Preserving Multilevel Galerkin Methods

CHEN Jie
(Department of Mathematics,Yibin University,Yibin 644000,China)

It is important to analyse the discrete matrix derived from the singularity preserving multilevel Galerkin methods.We need to estimate the value of elements,norm of the block matrices and the condition number of the coefficient matrix and so on.In the end,we obtain the boundness of the condition number controlled by a more simple matrix which is the key to solve the discrete equations.

integral equations;coefficient matrix;norm;condition number

A

1007-6883(2011)06-0012-05

2011-09-26

宜宾学院博士启动基金项目(2010B08).

陈杰(1982-),男,四川宜宾人,宜宾学院数学学院教师.

责任编辑 朱本华

猜你喜欢

性态宜宾尺度
带有阻尼项的Boussinesq方程解的大时间性态
浅议初等函数的性态
财产的五大尺度和五重应对
带inflow边界条件的Landau方程解的性态研究
The New Trends in Graphic Notation After 1945
一类共位群内捕食模型的复杂动力学性态
宜宾面塑的保护、传承与创新探讨
宜宾(外四首)
宜宾豆腐乳毛霉分离及应用
宇宙的尺度