一类具有分布时滞高阶微分方程的周期解
2011-12-21陈仕洲
陈仕洲
(韩山师范学院数学与信息技术系,广东潮州 521041)
一类具有分布时滞高阶微分方程的周期解
陈仕洲
(韩山师范学院数学与信息技术系,广东潮州 521041)
利用Mawhin重合度理论,研究了一类具有分布时滞的高阶p-Laplacian中立型微分方程,获得了其周期解存在性的一些新结果.
分布时滞;p-Laplacian;中立型泛函微分方程;周期解;重合度理论
1 引言及引理
近年来,关于p-Laplacian微分方程的周期解问题,已引起人们的关注[1-3].但对具有分布时滞的高阶p-Laplacian中立型微分方程周期解的研究并不多.文[1]和[3]分别研究了具有变差变元的p-Laplacian中立型方程
2 主要结果及其证明
3 注记和例子
[1]彭世国.具有偏差变元的p-Laplacian中立型Lienard型方程的周期解[J].数学年刊,2008,29A(5):617-626.
[2]PENG SHI-GUO,ZHU SI-NING.Periodic solutions for p-Laplacian Rayleigh equations with adeviating argument[J].Nonlinear Analysis,2007,67:138-146.
[3]朱艳玲,汪凯.具有p-Laplacian算子的中立型泛函微分方程周期解[J].系统科学与数学,2009,29(6):808-817.
[4]LU SHIPING,GE WWIGAO,ZHENG ZUXIOU.Periodic solutions to neutral differential equation with deviating arguments[J].Appl.Math.Comput.,2004,152:17-27.
[5]GAINES R E,MAWHIN J L.Coincidence degree and nonlinear differential equations[M].Berling:Springer-Verlag,1977,95-169.
[6]LI J W,WANG G Q.Sharp inequalities for periodic functions[J].Applied Mathematics E-Notes,2005(5):75-83.
Periodic Solutions for a Kind of High-Order Differential Equations with Distributed Delay Arguments
CHEN Shi-zhou
(Department of Mathematics and Information Technology,Hanshan Normal University,Chaozhou 521041,China)
By using the continuation theorem of coincidence degree theory developed by Mawhin,we study a kind of high-order p-Laplacian neutral functional differential equation with distributed delay arguments.Some new results on the existence of periodic solutions are obtained.
distributed delay;p-Laplacian;neutral functional differential equation;periodic solution;coincidence degree
O175.7
A
1007-6883(2011)06-0001-07
2011-10-16
陈仕洲(1959-),男,广东汕头人,韩山师范学院数学与信息技术系副教授.
责任编辑 朱本华