B细胞膜CD20抗原的分布与单分子力谱探测
2011-09-29王秋兰卢育洪李盛璞王牡蔡继业
王秋兰,卢育洪,李盛璞,王牡,蔡继业
1 暨南大学化学系,广州 510632
2 暨南大学附属第一临床医院血液科,广州 510632
B细胞膜CD20抗原的分布与单分子力谱探测
王秋兰1,卢育洪2,李盛璞1,王牡1,蔡继业1
1 暨南大学化学系,广州 510632
2 暨南大学附属第一临床医院血液科,广州 510632
CD20抗原分子在B细胞上表达下降是慢性B淋巴细胞白血病 (B-CLL) 的标志性特征。采用激光扫描共聚焦显微镜 (LSCM) 和量子点标记相结合的方法对正常和B-CLL外周血CD20+B淋巴细胞膜表面CD20抗原分子的表达及分布进行了荧光成像。同时,采用原子力显微镜 (AFM) 对 CD20+B细胞的形貌及超微结构特征进行了表征,并且将AFM针尖用生物素化的单克隆抗体进行修饰,对CD20+B细胞表面的CD20抗原-抗体之间的单分子力谱进行了探测。LSCM荧光图像显示,B-CLL CD20+B淋巴细胞上CD20分子的表达量比正常CD20+B淋巴细胞显著降低。AFM结果显示,B-CLL CD20+B淋巴细胞超微结构比正常的粗糙。力谱结果显示,CD20抗原-抗体的相互作用力大约是非特异性黏附力的5倍,CD20分子在正常CD20+B淋巴细胞膜上分布比较均匀,小部分有聚集现象,反之,在B-CLL CD20+B淋巴细胞膜表面分布稀疏。利用以上两种方法能进一步观察到B-CLL外周血B淋巴细胞的异常,并在一定程度上解释临床上B-CLL病人对利妥昔的低反应现象,为针对抗原CD20的治疗用药选择提供参考。
B-CLL,外周血CD20+B淋巴细胞,CD20分子,LSCM,AFM
Abstract:The lower expression of CD20 antigen molecules on the B cell membrane is the primary characteristic of B-chronic lymphocytic leukemia (B-CLL). In this paper, we combined laser scanning confocal microscopy (LSCM) and quantum dots labeling to detect the expression and distribution of CD20 molecules on CD20+B lymphocyte surface. Simultaneously, we investigated the morphology and ultrastructure of the B lymphocytes that belonged to the normal persons and B-CLL patients through utilizing the atomic force microscope (AFM). In addition, we measured the force spectroscopy of CD20 antigen-antibody binding using the AFMtips modified with CD20 antibody. The fluorescent images indicated that the density of CD20 of normal CD20+B lymphocytes was much higher than that of B-CLL CD20+B cells. The AFM data show that ultrastructure of B-CLL CD20+B lymphocytes became more complicated. Moreover, the single molecular force spectroscopy data show that the special force of CD20 antigen-antibody was four times bigger than the nonspecific force between the naked AFM tip and cell surface. The force map showed that CD20 molecules distributed homogeneously on the normal CD20+B lymphocytes, whereas, the CD20 molecules distributed heterogenous on B-CLL CD20+B lymphocytes. Our data provide visualized evidence for the phenomenon of low-response to rituximab therapy on clinical.Meanwhile, AFM is possible to be a powerful tool for development and screening of drugs for pharmacology use.
Keywords:B-chronic lymphocytic leukemia (B-CLL), peripheral blood CD20+B lymphocytes, CD20 molecule, laser scanning confocal microscopy (LSCM), atomic force microscope (AFM)
CD20分子是一种在细胞周期起始和细胞分化过程中起重要作用的膜蛋白,它在正常B淋巴细胞及大部分B细胞恶性淋巴瘤膜表面均有明显表达,这为抗 CD20抗体的免疫靶向治疗提供了基础。利妥昔单抗是一种嵌合鼠/人的单克隆抗体,该抗体可与纵贯细胞膜的CD20抗原特异性结合。已经有报道用利妥昔治疗慢性淋巴细胞增殖性疾病[1-3],但是在临床上 B-CLL病人对利妥昔治疗出现低反应现象[4],除其他因素外,肿瘤细胞的CD20抗原密度可能是影响治疗效果的因素[5-6]。一直以来,表征细胞表面抗原密度最常用的是流式细胞仪,流式表征正常和B-CLL B细胞表面CD20抗原密度的研究结果表明[7-12],CD20在B-CLL B细胞上的表达比在正常B细胞上的表达还要低,这为解释B-CLL对利妥昔治疗出现低反应提供了一定的依据。
AFM已经被广泛应用于生物领域中,并作为研究解决生物问题的有力工具。利用AFM可以在细胞水平上对样品进行成像[13-15]。随着对AFM功能的深入研究,目前可以利用原子力显微镜空间和力谱高分辨的独特优势,通过细胞和功能化针尖之间抗原抗体的相互作用或受体配体相互作用,来探测蛋白分子间作用力及细胞表面蛋白分子的分布[16-21],这方面研究已经成为国内外研究的新热点。对此,本课题组也有相关的报道[22-24]。本文首次尝试结合共聚焦显微镜和原子力显微镜对人正常和慢性淋巴白血病外周血单个B淋巴细胞表面的CD20抗原的分布情况进行分析和比较,为临床上针对 CD20分子治疗的药物选择提供一定的参考。
1 材料与方法
1.1 试剂和仪器
淋巴细胞分离液购自AXIS SHIELD PoC AS公司;RPMI1640培养液购自Gibgo公司;CD20+微珠和MS柱购自Mihenyi Biotech公司;链霉亲和素偶联发射中心波长655 nm (红色) 的量子点 (QD565)购自Sigma公司;其他所用的试剂皆为分析纯,实验用水为三次蒸馏水。Zeiss激光共聚焦扫描荧光显微镜 (LS M510,Zeiss,德国);原子力显微镜 (Autoprobe CP Research,Thermomicroscopes 公司,美国);免疫磁珠分选仪 (Mihenyi Biotech公司,德国)。
1.2 方法
1.2.1 外周血取样
B慢性淋巴白血病病人外周血取自暨南大学附属第一临床医院血液科,正常外周血取自健康志愿者。
1.2.2 单个核细胞分离
分别抽取健康人和B-CLL病人新鲜外周血,加肝素钠抗凝,用密度梯度离心法分离获得外周血单个核细胞。具体如下:以等体积 RPMI1640培养液稀释肝素抗凝血,小心铺在细胞分离液之液面上(稀释液∶淋巴细胞分离液为 2∶1),2 000 r/min离心15 min,收集环状乳白色淋巴细胞层,单个核细胞沉淀经RPMI1640培养液反复洗2次即得所需细胞。
1.2.3 免疫磁珠分选法分离CD20+B细胞
将得到的单个核细胞用 80 μL的缓冲液对 107个细胞进行重悬,加入20 μL的CD20微珠,混匀,4 ℃~8 ℃孵育15 min,加入1 mL缓冲液洗涤细胞,1 500 r/min离心10 min,完全去除上清,用500 μL缓冲液重悬,所得细胞悬液加入 MS分选柱中,收集先行流出的未标记细胞组分,并用500 μL缓冲液冲洗MS柱,重复3次,此时收集到的悬液为CD20阴性细胞。将分选柱移出磁场,于柱中加1 mL缓冲液,并用活塞快速将分选柱上滞留的细胞洗脱下来,这些细胞是磁性标记的 CD20阳性细胞。由于慢淋病人外周血单个核细胞中CD20+B淋巴细胞占90%以上,故无需进一步纯化[25]。
1.2.4 激光扫描共聚焦实验
使用 Zeiss激光共聚焦扫描荧光显微镜对CD20+B淋巴细胞进行成像。将分离出的CD20+B淋巴细胞滴在经多聚赖氨酸处理的盖玻片上,用 PBS清洗3次,4% (质量分数) 多聚甲醛固定15 min,再用PBS清洗3次,加入50 μL 10 mg/L的生物素化的单克隆CD20抗体室温孵育30 min,PBS清洗除去过量的抗体,加入 50 μL 1 mg/L链霉亲和素QD655室温孵育30 min,PBS清洗除去过量的链霉亲和素QD655,封片,对处理好的载玻片进行共聚焦成像。
1.2.5 针尖修饰
AFM 针尖修饰的过程[26-27]:将 AFM 针尖(UL20B硅探针,力常数为0.9 N/m) 在乙醇溶液中浸泡5 min,紫外灯下辐照30 min,随后把针尖浸泡在1 g/L生物素化的牛血清白蛋白溶液中37 ℃孵育过夜,用PBS洗去过量的生物素化牛血清白蛋白溶液,再将针尖浸泡在1 g/L链霉亲和素溶液中室温孵育30 min,用 PBS洗去过量的链霉亲和素,然后将针尖浸泡在10 mg/L生物素化抗人的CD20抗体溶液中4 ℃孵育过夜,PBS清洗过量的抗体,最后将针尖浸泡在PBS溶液中4 ℃保存备用,在空气中自然晾干使用。
1.2.6 AFM样品制备
分别取正常和B-CLL外周血B淋巴细胞,滴于玻片上,使其自然铺展,吸附10 min,然后用 4%多聚甲醛固定15 min,用蒸馏水冲洗3次,室温自然干燥。立即进行AFM扫描。
1.2.7 原子力显微镜扫描
将载有细胞样品的玻片固定在 AFM 的扫描台上,用监视器定位所要扫描的样品区域,对样品进行扫描成像,实验采用100 μm扫描器,空气中进行扫描,以接触模式成像。所有图像仅经仪器配置软件 (Thermomicroscopes proscan image processing software version 2.1) 平滑处理,以消除扫描方向上的低频背景噪音。原子力显微镜的力谱用于分析力曲线测量。所有的力曲线都是在同一加载速率下测量得到。
2 结果与分析
2.1 正常和B-CLL外周血CD20+B淋巴细胞的荧光成像
将量子点标记的细胞样品放在LSCM下观察,得到量子点标记的外周血 CD20+B淋巴细胞的激光共聚焦图像 (图1),其中A和D为荧光图,B和E为微分干涉 (DIC) 图,C和F为叠加图。由于CD20+B淋巴细胞携带CD20分子,图1A和1D中细胞发红光代表 CD20抗原分子表达于该细胞上,且分布在细胞膜表面,核区未出现,该实验结果进一步证实了所分离的细胞确为 CD20+B淋巴细胞,并且从图中可以明显看出B-CLL外周血CD20+B淋巴细胞表面 CD20抗原分子表达量低于正常外周血 CD20+B淋巴细胞。
2.2 正常和B-CLL外周血CD20+B淋巴细胞形态及CD20抗原-抗体特异性相互作用力的AFM分析
对正常和B-CLL外周血CD20+B淋巴细胞进行了AFM成像 (图2A和2B),高分辨的形貌图像显示正常外周血CD20+B淋巴细胞比较光滑,而B-CLL外周血 CD20+B淋巴细胞较粗糙。为了进一步探测单个正常和B-CLL外周血CD20+B淋巴细胞表面受体分子即CD20的分布情况,我们对这2种淋巴细胞分别进行超微结构成像以达到定位的目的 (图2C和 2D)。利用 AFM 力曲线测量的方法,在 1 μm× 1 μm的膜区域共测量了256条力曲线,分析检测这2种细胞的CD20+B淋巴细胞表面CD20抗原-抗体的特异性相互作用(图 3A和 3B),图中白色的点代表该位置有很强的黏附力,这些可探测到黏附力的位置就是CD20+B淋巴细胞表面的 CD20抗原分布,其中代表性的力曲线如图3C (正常B淋巴细胞) 和D(B-CLL B淋巴细胞)。力曲线回收使CD20+B淋巴细胞表面CD20抗原和CD20抗体修饰的AFM针尖作用断裂。对照实验使用未修饰 CD20抗体的针尖对正常和 B-CLL CD20+B淋巴细胞进行力曲线测量,发现2种细胞与针尖间均没有出现明显的作用力,具有代表性的力曲线如图3E (正常B淋巴细胞)和 F (B-CLL B淋巴细胞)。这个结果说明了 CD20抗原和对应抗体具有特异性和高亲和性,并且抗原-抗体特异性作用力约是非特异性4倍。对比图3A和3B,发现CD20抗原在正常CD20+B淋巴细胞膜上的分布均匀,小部分有聚集现象,而在 B-CLL CD20+B淋巴细胞膜上的分布相对要稀少,这与用LSCM 观察到的结果一致。这很可能是因为,相对于正常外周血B淋巴细胞,B-CLL B细胞是处在B淋巴细胞成熟的早期阶段,并且CD20在B-CLL B细胞表达下降是B-CLL的标志性特征[4]。
图1 CD20+B淋巴细胞CD20分子标记QD655激光扫描共聚图Fig. 1 LSCM images of CD20 molecules of CD20+B lymphocytes labeled with QD565. (A) Fluorescence image of normal CD20+B lymphocyte. (B) DIC image of normal CD20+B lymphocyte. (C) Merged image of normal CD20+B lymphocyte. (D) Fluorescence image of B-CLL CD20+B lymphocyte. (E) DIC image of B-CLL CD20+B lymphocyte. (F) Merged image of B-CLL CD20+B lymphocyte.
图2 CD20+B淋巴细胞的原子力图Fig. 2 AFM images of CD20+B lymphocytes. (A) 3-D image of normal CD20+B lymphocyte (9 μm×9 μm). (B) 3-D image of B-CLL CD20+B lymphocyte (9 μm×9 μm). (C) Ultrastructure image of normal CD20+B lymphocyte (1 μm×1 μm). (D)Ultrastructure image of B-CLL CD20+B lymphocyte (1 μm×1 μm). div: division.
图3 CD20+B淋巴细胞的力曲线Fig. 3 Force curves of CD20+B lymphocytes. Map of force curves pots (n=256) recorded using anti-human CD20 functionalized AFM tips and cells (A: normal group, B: B-CLL group, fwhite>fblack, white spots represent the location of CD20 molecules). (C) The force distance curves between the functionalized tip and normal CD20+B lymphocytes. (D) The force distance curves between the functionalized tip and B-CLL CD20+B lymphocytes. (E) The force distance curves between the unfunctionalized tip and normal CD20+B lymphocytes. (F)The force distance curves between the unfunctionalized tip and B-CLL CD20+B lymphocytes.
3 结论
本实验通过结合LSCM和AFM两种方法,分析对比了人正常和外周血单个 CD20+B淋巴细胞膜表面 CD20抗原的表达及分布情况。结果表明,与正常B淋巴细胞相比,CD20在B-CLL B淋巴细胞上面的表达低,分布不均匀。首先,利用LSCM和AFM能进一步辨别出B-CLL B淋巴细胞的异常,结合形态学和其他特征,能够提高B淋巴细胞异常诊断的精确性。其次,利妥昔治疗能改善患B细胞白血病人的病情,但是体内确切的治疗机制并不清楚,因此B淋巴细胞表面CD20抗原表达的多少与临床上利妥昔治疗有一定的关系[28]。本实验结果在一定程度上能解释临床上B-CLL病人对利妥昔反应低的原因,并且为针对抗原 CD20的治疗用药选择提供一定的参考。
REFERENCES
[1] Byrd JC, Murphy T, Howard RS, et al. Rituximab using a thrice weekly dosing schedule in B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma demonstrates clinical activity and acceptable toxicity. J Clin Oncol, 2001, 19(8): 2153−2164.
[2] Huhn D, von Schilling C, Wilhelm M, et al. Rituximab therapy of patients with B-cell chronic lymphocytic leukemia. Blood, 2001, 98(5): 1326−1331.
[3] O’Brien SM, Kantarjian H, Thomas DA, et al. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol, 2001, 19(8): 2165−2170.
[4] Oscier D, Fegan C, Hillmen P, et al. Guidelines on diagnosis and management of chronic lymphocytic leukemia. Br J Haematol, 2004, 125(3): 294−317.
[5] Wierda WG, Keating MJ, O’Brien S. Refractory chronic lymphocytic leukemia: prognosis and treatment options. Am J Cancer, 2004, 3(3): 163−178.
[6] Rossmann ED, Lundin J, Lenkei R, et al. Variability in B-cell antigen expression: implications for the treatment of B-cell lymphomas and leukemias with monoclonal antibodies. Hematol J, 2001, 2(5): 300−306.
[7] Almasri NM, Duque RE, Iturraspe J, et al. Reducedexpression of CD20 antigen as a characteristic marker for chronic lymphocytic leukemia. Am J Hematol, 1992,40(4): 259−263.
[8] Marti GE, Faguet G, Bertin P, et al. CD20 and CD5 expression in B-chronic lymphocytic leukemia. Ann N Y Acad Sci, 1992, 651(1): 480−483.
[9] D'Arena G, Dell'Olio M, Musto P, et al. Morphologically typical and atypical B-cell chronic lymphocytic leukemias display a different pattern of surface antigenic density.Leukemia Lymphoma, 2001, 42(4): 649−654.
[10] Wang LL, Abbasi F, Gaigalas AK, et al. Comparison of fluorescein and phycoerythrin conjugates for quantifying CD20 expression on normal and leukemic B-cells. Cytometry B Clin Cytom, 2006, 70(6): 410−415.
[11] Ginaldi L, De Martinis M, Matutes E, et al. Levels of expression of CD19 and CD20 in chronic B cell leukaemias. J Clin Pathol, 1998, 51(5): 364−369.
[12] Johnson NA, Boyle M, Bashashati A, et al. Diffuse large B-cell lymphoma: reduced CD20 expression is associated with an inferior survival. Blood, 2009, 113(16):3773−3780.
[13] Scheuring S, Dufrêne YF. Atomic force microscopy:probing the spatial organization, interactions and elasticity of microbial cell envelopes at molecular resolution. Mol Microbiol, 2010, 75(6): 1327−1336.
[14] Yuana Y, Oosterkamp TH, Bahatyrova S, et al. Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles. J Thromb Haemost, 2010,8(2): 315−323.
[15] Lesoil C, Nonaka T, Sekiguchi H, et al. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study. Biochem Biophys Res Commun, 2010, 391(3): 1312−1317.
[16] Lee S, Mandic J, Van Vliet KJ. Chemomechanical mapping of ligand-receptor binding kinetics on cells. Proc Natl Acad Sci USA, 2007, 104(23):9609−9614.
[17] Girish CM, Binulal NS, Anitha VC, et al. Atomic force microscopic study of folate receptors in live cells with functionalized tips. Appl Phys Lett, 2009, 95(22):223703/1-223703/3.
[18] Moskalenko AV, Yarova PL, Gordeev SN, et al. Single protein molecule mapping with magnetic atomic force microscopy. Biophys J, 2010, 98(3): 478−487.
[19] Duman M, Pfleger M, Zhu R, et al. Improved localization of cellular membrane receptors using combined fluorescence microscopy and simultaneous topography and recognition imaging. Nanotechnology, 2010, 21(11):115504.
[20] Soumetz FC, Saenz JF, Pastorino L, et al. Investigation of integrin expression on the surface of osteoblast-like cells by atomic force microscopy. Ultramicroscopy, 2010,110(4): 330−338.
[21] Taninaka A, Takeuchi O, Shigekawa H. Site-selective analysis of biotin−streptavidin interactions using dynamic force spectroscopy. Hyomen Kagaku, 2010, 31(1): 41−47.[22] Hu MQ, Wang JK, Cai JY, et al. Nanostructure and force spectroscopy analysis of human peripheral blood CD4+T cells using atomic force microscopy. Biochem Biophys Res Commun, 2008, 374(1): 90−94.
[23] Hu MQ, Chen JN, Wang JK, et al. AFM- and NSOM-based force spectroscopy and distribution analysis of CD69 molecules on human CD4+T cell membrane. J Mol Recognit, 2009, 22(6): 516−520.
[24] Huang FC, Gao SJ, Qiu SY, et al. Morphology and force spectroscopy of human peripheral blood CD8+T cells studied by atomic force microscope. J Instr Anal, 2009,28(10):1143−1147.
黄飞程, 郜世隽, 邱思远, 等. 基于原子力显微镜的人外周血 CD8+T细胞形貌观察与力谱分析. 分析测试学报, 2009, 28(10): 1143−1147.
[25] Beum PV, Lindorfer MA, Beurskens F, et al. Complement activation on B lymphocytes opsonized with rituximab or Ofatumumab produces substantial changes in membrane structure preceding cell lysis. J Immunol, 2008, 181(1):822−832.
[26] Wojcikiewicz EP, Abdulreda MH, Zhang XH, et al. Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2. Biomacromolecules, 2006, 7(11): 3188−3195.
[27] Jin Y, Wang KM, Tan WH, et al. Monitoring molecular beacon /DNA interactions using atomic force microscopy.Anal Chem, 2004, 76(19): 5721−5725.
[28] Huh YO, Keating MJ, Saffer HL, et al. Higher levels of surface CD20 expression on circulating lymphocytes compared with bone marrow and lymph nodes in B-cell chronic lymphocytic leukemia. Am J Clin Pathol, 2001,116(3): 437−443.
Distribution and force spectroscopy of CD20 antigen-antibody binding on the B cell surface
Qiulan Wang1, Yuhong Lu2, Shengpu Li1, Mu Wang1, and Jiye Cai1
1 Department of Chemistry, Jinan University, Guangzhou 510632, China
2 Department of Internal Medicine, First Affiliated Hospital of Jinan University, Guangzhou 510632, China