APP下载

《平行线与相交线》单元检测题A

2008-07-11陈绍明

关键词:内错角平分过点

陈绍明

一、选择题

1. 下列命题中,正确的是().

A. 有公共顶点的两个角是对顶角

B. 有公共顶点且又相等的角是对顶角

C. 两条直线相交所成的角是对顶角

D. 角的两边互为反向延长线的两个角是对顶角

2. 下列说法正确是().

A. 和为180°的两个角叫做邻补角

B. 直线是平角

C. 不相交的两条直线叫做平行线

D. 互补的两个角若相等,则此两角都是直角

3. 如图1,如果∠1=∠2,那么().

A. AB∥CD(内错角相等,两直线平行)

B. AD∥BC(内错角相等,两直线平行)

C. AB∥CD(两直线平行,内错角相等)

D. AD∥BC(两直线平行,内错角相等)

4. 如图2,下列条件不能判断直线l1∥l2的是().

A. ∠1 = ∠3 B. ∠2 = ∠3

C. ∠4 = ∠5 D. ∠2 + ∠4 = 180°

5. 如图3,直线a、b被直线c所截,如果a∥b,那么().

A. ∠1 > ∠2 B. ∠1 = ∠2

C. ∠1 < ∠2 D. ∠1 + ∠2 = 180°

6. 如图4,Rt△ABC中,∠ACB = 90°,DE过点C且平行于AB,若∠BCE = 35°,则∠A的度数为().

A. 35°B. 45°C. 55°D. 65°

7. 如图5,直线AB∥CD,EF⊥CD于F,如果∠GEF = 20°,那么∠1的度数是().

A. 20° B. 70° C. 80° D. 160°

8. 如图6,已知,AB∥CD∥EF,BC∥AD,AC平分∠BAD,那么图中与∠AGE相等的角有().

A. 5个B. 4个C. 3个D. 2个

二、填空题

9. 如果∠A = 35°18′,那么∠A的余角等于[ ].

10. 如图7,直线AB、CD相交于点O,OB平分∠DOE,若∠DOE = 60°,则∠AOC的度数是[ ].

11. 如图8,已知直线a∥b,∠1 = 35°,则∠2的度数是[ ].

12. 如图9,已知a∥b,∠1 = 70°,则∠2 = [ ].

13. 如图10,添加一条件可使a∥b,你添加的条件是[ ].

14. 如图11,已知AB∥CD,直线MN分别交AB、CD于点E、F,∠MFD=50°,EG平分∠MEB,那么∠MEG的大小是[ ].

15. 如图12,AB∥CD,∠A = 48°,∠C = ∠E, 则∠C的度数为[ ].

三、解答题

16. 一个角的补角比它的余角的3倍多16°,求这个角的度数.

17. 如图13,已知∠1 = 60°,∠2 = 120°,那么直线a与b平行吗?为什么?

18.如图14,已知AB∥DE,求证:∠B + ∠D = ∠BCD.

19. 如图15,已知∠1 = ∠2,∠3 = ∠4,求证AC∥DF,BC∥EF.

20. 如图16,已知梯形ABCD中,AD∥BC,E为AB的中点,动手操作,解决下列问题:

(1)过点E画EF∥BC,交CD于F.

(2)度量AD、BC、EF的长度,发现EF与AD、BC有何数量关系?

(3)EF与AD平行吗?请说明理由.

“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文”

猜你喜欢

内错角平分过点
平分比萨
平分气球
2020年本刊原创题(二)
笑笑漫游数学世界之三线八角
不听话把你卖了
直线平分固定的三角形面积的类型
数学(二)
三线八角中的主线——截线
“三线八角”巧识别
4.2 相交线与平行线