不同截雨干旱时间对毛竹叶片氮含量时空分布的影响
2025-01-26曹永慧陈庆标周本智葛晓改王小明
摘要:【目的】叶片氮含量是植物重要功能性状之一,定量分析不同截雨干旱时间对毛竹(Phyllostachys edulis)叶片氮含量影响,为季节性干旱条件下毛竹氮肥管理提供决策依据。【方法】以钱江源森林生态系统定位研究站野外毛竹林为研究对象,通过“顶棚法”人工截雨干旱处理2年试验数据测定,定量分析不同截雨干旱时间下毛竹叶片氮含量的时空分布特征及其对干旱的响应。【结果】截雨干旱处理1和2年后,干旱毛竹叶片氮含量年平均值均高于自然生长条件下(对照)。截雨干旱处理2年后的毛竹叶片氮含量年平均值比干旱处理1年后的高,但差异不显著。与对照相比,截雨干旱1年使夏季、冬季毛竹叶片氮含量增加;随着干旱处理时间延长,叶片氮含量在夏季、秋季、冬季保持稳定。截雨干旱1年后,除冬季毛竹冠层上部叶片外,夏季和冬季冠层各叶片氮含量显著比对照高(Plt;0.05);截雨干旱2年后,仅冬季毛竹冠层上部叶片氮含量显著高于对照。截雨干旱1年后夏季毛竹冠层上部与下部叶片氮含量显著差异(Plt;0.05)。随着干旱时间延长,毛竹叶片氮含量与对照差异显著且受季节和竹龄双重影响,但干旱处理下春季不同年龄毛竹叶片氮含量与对照差异不显著、冬季1度竹(1~2年生)叶片氮含量显著高于对照的趋势比较稳定。截雨干旱1年和2年后,不同年龄毛竹间春季和夏季叶片氮含量均无显著差异,但秋季和冬季1度竹叶片氮含量与4度竹(7~8年生)间差异显著(Plt;0.05)。相比干旱1年,较长时间干旱下老龄竹叶片年平均氮含量保持较高值。【结论】 截雨干旱处理2年的数据表明,干旱毛竹叶片平均氮含量高于对照但不显著,截雨干旱处理年限对毛竹叶片氮含量的影响受生长季节和竹龄双重调节。随着截雨干旱时间延长,毛竹叶片氮含量高于对照处理的季节发生频率增加;干旱与对照处理毛竹叶片氮含量显著差异发生的冠层部位减少,局限于个别冠层的差异显著。今后气候变化下毛竹养分管理需要考虑季节和竹龄因素。
关键词:毛竹;截雨干旱;叶片含氮量;生长季节;林龄;冠层部位
中图分类号:S718""""""" 文献标志码:A
开放科学(资源服务)标识码(OSID):
文章编号:1000-2006(2025)01-0155-07
Effects of different drought periods on the spatiotemporal distribution of nitrogen content in the leaves of" Phyllostachys edulis
CAO Yonghui CHEN Qingbiao "ZHOU Benzhi1*, GE Xiaogai WANG Xiaoming1
(1.Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Qianjiangyuan Forest Ecosystem Research Station, National Forestry and Grassland Administration, Hangzhou 311400, China; 2. Xin’anjiang Forest Farm of Jiande City of Zhejiang Province, Jiande 311600, China)
Abstract: 【Objective】 The foliar nitrogen content is an important functional trait of plants. Herein, the effect of" drought on the nitrogen content of Moso bamboo (Phyllostachys edulis)" leaves was quantitatively analyzed. The study provides a theoretical basis for the sustainable and efficient management of bamboo forests under the current global climate change scenario.【Method】A wild bamboo forest located in Miaoshanwu Forest Farm of Qianjiangyuan Forest Ecosystem Research Station was selected as the research object in this study. The 2-year experimental data pertaining to precipitation exclusion in the bamboo forest, and the spatiotemporal distribution characteristics of the nitrogen content per unit mass of Phyllostachys edulis leaves under different drought periods and their response to drought stress were analyzed.【Result】 The annual average nitrogen content per unit mass of bamboo leaves following 1 and 2 years of precipitation exclusion was high than that under natural growth conditions (CK). Although the annual average nitrogen content after 2 years of precipitation exclusion was higher than that after 1 year of exposure to drought, the difference was not significant. Exposure to drought for 1 year increased the foliar nitrogen content during summer and winter, compared to that of the CK; however, the foliar nitrogen content remained stable in summer, autumn, and winter following prolonged exposure to drought. With the exception of the nitrogen content of the leaves in the upper canopy in winter, the foliar nitrogen content following 1 year of precipitation exclusion was significantly higher than that of the CK in summer and winter (P lt; 0.05). The nitrogen content of the upper leaves was significantly higher than that of the CK in winter after 2 years of precipitation exclusion. The nitrogen content of the upper and lower leaves differed significantly in summer (P lt; 0.05) after 1 year of precipitation exclusion. The prolongation of drought exposure caused significant differences between the foliar nitrogen content of drought-exposed and CK plants, depending on the season and age of the bamboo. However, the foliar nitrogen content of different degrees of bamboo did not differ significantly from that of the CK during spring. The foliar nitrogen content of first degree (1-2 years old) bamboo plants under drought stress was significantly higher than that of the CK in winter. There were no significant differences between the foliar nitrogen content of different degrees of bamboo plants in spring and summer, following 1 or 2 years of precipitation exclusion. However, the foliar nitrogen content of the first (1-2 years old) and fourth (7-8 years old) degree bamboo plants differed significantly in autumn and winter (P lt; 0.05). The annual average foliar nitrogen content of the elderly bamboo plants exposed to prolonged drought was relatively high compared to that of the plants exposed to drought for 1 year.【Conclusion】Analysis of the 2-year data obtained during precipitation exclusion demonstrated that the average foliar nitrogen content of bamboo following precipitation exclusion was higher than that of the CK, but the differences were not significant. The effects of the duration of drought exposure on the foliar nitrogen content were influenced by the season and plant age. The prolongation of precipitation exclusion increased the number of seasons during which the foliar nitrogen content of the drought-exposed plants was higher than that of the CK. Additionally, the number of canopy layers of drought-exposed and control plants that exhibited significant differences in foliar nitrogen content was reduced following the extension of precipitation exclusion, and the differences were limited to individual canopies. The season and age of the bamboo plants need to be considered for the nutrient management of Moso bamboo in future, under the current climate change situation.
Keywords:Phyllostachys edulis; precipitation exclusion; foliar nitrogen content; growing" season; forest age; canopy position
水分是植物光合作用过程中促进碳同化的良好介质,水分短缺引起的干旱问题已成为制约全世界大部分地区植物生长的非生物因素之一[1]。然而,植物能够通过调整自身叶片功能性状的变化来适应干旱等气候变化[2-5]。叶片氮含量作为植物重要功能性状之一,其对干旱的响应趋势因植物种类差异而不同[3,6]。有研究发现,干旱条件下植物叶片氮含量降低[7-8],马晓东等[9]研究发现轻度干旱胁迫条件下添加适量的氮能够增强植株对氮素的吸收征调能力。
毛竹(Phyllostachys edulis)具有生长快、成材早、产量高、用途广、收益大等优点,是中国南方地区重要的森林资源而备受关注[10-14]。目前,国内外学者针对竹林研究更多集中在传统栽培经营管理技术研究和定向培育研究[15-19],对其光合作用特征也开展了系统研究[1 20-21]。氮素是毛竹生长重要限制因子[16,22-24],但目前仍缺乏关于不同干旱时间对毛竹冠层叶片氮含量影响的报道。近年来,由于劳动力成本增加,我国竹产业面临成本压力、市场压力,毛竹林经营效益明显下滑,严重影响竹农经营积极性,南方毛竹主产区的毛竹经营现状多数处于弃管的粗放经营状态(近自然状态)[25]。粗放经营情形下,随着气候变化干旱事件发生频率和强度增加,势必会对毛竹的生产力和碳汇功能产生重要影响,而干旱对粗放经营毛竹叶片氮含量时空分布影响仍不清晰。因此,在自然生长、没有施肥的粗放经营状态下,笔者以“顶棚法”人工模拟截雨干旱试验,对不同生长季节、不同年龄毛竹个体各冠层叶片的氮含量进行系统研究,探究毛竹叶片氮含量对干旱胁迫的响应及其受生长季节和冠层部位的影响程度,旨在为全球气候变化背景下毛竹人工林的可持续高效经营提供理论依据。
1 材料与方法
1.1 研究地概况及试验材料
试验地位于国家林业和草原局钱江源森林生态系统定位研究站富阳区庙山坞辅站内(119°56′~120°02′E,30°03′~30°06′N)。年平均气温16.1 ℃,平均降水量1 441.9 mm。试验区毛竹林为20世纪60年代种植,粗放经营,不施肥、不翻耕,仅少量采挖春笋。林下少有灌木和草本,凋落物平均厚度约2.0 cm。庙山坞毛竹林土壤有机碳含量为38.44 g/kg,土壤氮含量为2.85 g/kg,土壤有效磷含量为6.03 mg/kg。在坡度、坡向和坡位一致的试验毛竹林中设置6个20 m×20 m样地,样地内竹子密度为3 875 株/hm 郁闭度0.95,立竹度4度、3度、2度、1度的数量比例为1.5∶2.0∶1.0∶1.0,竹株胸径分布在4.0~13.6 cm,平均胸径为(9.8±0.3)cm,平均竹高(13.2±0.5)m。
1.2 截雨干旱试验及土壤含水率测定
于毛竹新竹抽枝长叶完成后,在试验毛竹林6个20 m×20 m样地内选择设置10 m×10 m的样方各1个,分别用于自然生长(对照)样地和截雨干旱处理样地试验,即对照和截雨干旱样地各3块。将截雨干旱样地上稀疏的灌木去除,参照文献[24]用“顶棚法”模拟截雨,以自然生长为对照。试验期间,在取样测定氮含量时,同时在野外试验样区内分别采集4个土壤剖面作为重复,每个剖面采集0~20 cm深度土壤样品带回测定土壤含水率[26]。
1.3 叶片氮含量测定
于自然生长和人工截雨干旱处理试验1年(2015)和2年(2016)后,分别于测定年的3月(春季)、8月(夏季)、10月(秋季)、12月(冬季)和翌年3月的每月上旬取样,进行叶片氮素、水分含量等指标的连续测定。在每块样地中分别选择接近林分平均胸径大小的不同林龄毛竹各2株。借助野外搭建的梯子,每个处理各取30片向阳叶片(分别不同竹龄和不同冠层),用于氮含量测定。3块样地取样作为3个重复测定值,最后取平均值。氮含量年平均值为当年所有选取年龄竹子上、中和下部冠层叶片测定值的平均值。所有叶样105 ℃烘箱杀青2 h后在65 ℃下烘干24 h至质量恒定,并磨碎通过孔径0.149 mm土壤筛,采用Foss全自动凯氏定氮仪(KJ8400,丹麦福斯)测定。
1.4 数据处理
毛竹叶片氮含量在不同年龄、季节和冠层之间的差异,分别采用SPSS 10.0和Excel 2007进行数据统计分析,采用Duncan’s多重比较法进行差异显著性分析,显著性水平设置为0.05。各参数以平均值±标准误差(mean±SE)表示。
2 结果与分析
2.1 截雨干旱对毛竹叶片氮含量的影响
经测定,试验中各生长季节毛竹对照样地土壤含水率显著高于截雨干旱样地的,其中对照样地0~20 cm土壤含水率各季节平均为(23.42±1.09)%~(30.15±0.94)%,截雨干旱处理1年(2015)样地0~20 cm土壤含水率各季节平均为(4.44±0.87)%~(4.92±0.53)%,截雨干旱处理2年(2016)样地0~20 cm土壤含水率各季节平均为(4.08±0.81)%~(4.55±0.10)%。受生长季节影响不同处理之间毛竹叶片氮含量有差异(表1)。截雨干旱1年后,夏季和冬季干旱处理叶片氮含量显著高于自然生长状态下(对照)的(Plt;0.05),而秋季则相反,干旱略低于对照。截雨干旱2年后,除了秋季干旱显著低于对照外,夏季和冬季干旱显著高于对照的,春季干旱高于对照但不显著。可知,随着截雨干旱时间延长,干旱叶片氮含量高于对照处理的季节发生频率增加。
截雨干旱处理1年和2年后,干旱毛竹叶片氮含量年平均值均高于对照,其中干旱处理1年后干旱与对照叶片的氮含量年平均值差异较显著(Plt;0.05)(表1)。截雨干旱2年后的氮含量年平均值大于干旱1年后的,但差异不显著。受生长季节影响,截雨干旱2年后的叶片氮含量仅春季显著高于干旱1年后的(Plt;0.05),秋季略高于干旱1年后的,夏季和冬季的叶片氮含量反而略低于干旱1年后的。
不同截雨干旱处理年限下毛竹叶片氮含量随季节变化存在差异。截雨干旱处理1年,氮含量表现为夏季gt;冬季gt;秋季,春季与秋季相近;截雨干旱处理2年后表现为春季最高,而夏季、秋季、冬季3季相近。可知,截雨干旱处理年限长短亦会影响毛竹叶片氮含量季节间差异。对照处理第1年毛竹叶片氮含量表现为春季、秋季相近和夏季、冬季相近,且春季、秋季高于夏季、冬季;对照第2年其值春季、秋季相近且最高,夏季次之,冬季最低。可知,与对照相比,短期截雨干旱(处理1年)使夏季、冬季叶片氮含量增加;随着干旱处理延长,其值在夏季、秋季、冬季保持稳定。
2.2 截雨干旱对毛竹叶片氮含量影响的冠层效应
经测定(表2)可知,截雨干旱1年后,除冬季上部叶片外,夏季和冬季各冠层叶片氮含量显著高于对照的(Plt;0.05),春季和秋季冠层各叶片其值在干旱与对照处理间差异不显著。截雨干旱2年后,同整株叶片变化趋势一致,除了秋季各冠层叶片氮含量干旱低于对照外,夏季和冬季各冠层叶片氮含量干旱高于对照,仅冬季冠层上部叶片该值显著高于对照(Plt;0.05);春季各冠层该值干旱略高于对照。可知,随着截雨干旱时间延长,干旱与对照处理叶片氮含量显著差异发生的冠层部位减少,局限于个别冠层的差异显著。
经测定(表2)可知,截雨干旱1年和2年后,同整株个体叶片年平均值一样,干旱毛竹各冠层部位的叶片氮含量年平均值均高于对照。除干旱1年后冠层上部叶片氮含量年平均值与对照之间显著外(Plt;0.05),其余部位叶片处理与对照差异均不显著。冠层间,除了截雨干旱1年后夏季冠层上部与下部叶片氮含量差异显著外(Plt;0.05),不同截雨干旱年限后的其余季节各冠层间差异均不显著。分析叶片氮含量随冠层垂直变化发现,截雨干旱2年后,春季和夏季叶片氮含量随冠层高度的大小顺序基本与对照一致,春季叶片为冠层下部gt;中部gt;上部,夏季为上部gt;下部gt;中部。
2.3 截雨干旱对毛竹叶片氮含量影响的竹龄效应
经测定(表3)可知,截雨干旱1年后,夏季1度、2度和3度竹干旱均显著高于对照(Plt;0.05),冬季1度和4度竹干旱显著高于对照处理(Plt;0.05),春季和秋季各度竹叶片氮含量不同处理之间差异均不显著。截雨干旱2年后,秋季1度和4度竹干旱显著低于对照处理(Plt;0.05),冬季1度和2度竹干旱显著高于对照处理(Plt;0.05),春季和夏季各度竹叶片氮含量不同处理之间差异均不显著。可知,截雨干旱年限影响不同度竹叶片氮含量大小与对照处理间差异的季节性变化。
由表3可知,截雨干旱1年后,不同年龄毛竹叶片的年平均氮含量均高于对照。截雨干旱2年后,仅2度竹叶片年平均值显著高于对照的(Plt;0.05),1度、4度竹的年平均值略低于对照,但差异不显著。截雨干旱2年后,除1度竹外,其余年龄毛竹叶片年平均氮含量均比截雨干旱1年后的高。截雨干旱1年后,秋季1度竹叶片氮含量与2、3和4度竹间差异分别达显著(Plt;0.05),冬季1度竹叶片氮含量与3、4度竹间差异分别达显著(Plt;0.05)。截雨干旱2年后,秋季4度竹叶片氮含量与1、3度竹间差异分别达显著(Plt;0.05),冬季1度竹与4度竹间差异分别达显著(Plt;0.05)。截雨干旱1年和2年后,春季和夏季叶片氮含量各度竹间均无显著差异。截雨干旱1年后,不同年龄毛竹叶片氮含量的年平均值大小依次为1度竹gt;3度竹gt;2度竹gt;4度竹;截雨干旱2年后,其大小依次为4度竹gt;3度竹gt;2度竹gt;1度竹,可知,较长时间干旱条件下老龄毛竹叶片年平均氮含量保持较高值。
3 讨 论
氮素对植物生长发育最为重要,植物缺氮时蛋白质合成受阻,叶绿素含量下降,光合作用降低,植物生长受限[27]。与多数研究认为的干旱使得植物叶片氮含量低于对照的结果不同[3,7-8,28],本研究表明,截雨干旱处理1年和2年后,干旱条件下毛竹叶片氮含量年平均值均高于对照。这与方璇等[29]认为杉木叶片氮素对水分较为敏感,适当的水分亏缺能使叶片的氮素浓度增加的研究结论较为一致。植物叶片氮含量受水分亏缺影响的机制尚不清楚,本研究可能是水分亏缺限制了毛竹生长,导致参与光合作用的氮减少,而使叶片氮素积累[30]。
冠层叶片氮含量的垂直梯度分布是林木冠层重要、普遍特征之一[31-32]。植株不同生长发育阶段,冠层叶片氮素存在重新分配[33-34]。与前人研究一致,干旱条件下毛竹冠层叶片氮素在不同季节亦存在重新分配。截雨干旱1年后,各季节叶片氮含量冠层垂直分布模式与对照差异较明显,截雨干旱2年后,春季和夏季叶片氮含量冠层垂直变化大小顺序基本与对照一致,说明干旱时间延长使得毛竹各冠层叶片氮含量梯度变化趋于稳定,这可能有利于光的吸收利用和光合作用保持。本研究发现随着截雨干旱时间延长,干旱与对照处理叶片氮含量之间差异显著所发生的冠层部位减少,仅局限于个别冠层的显著差异,这进一步说明毛竹对干旱的适应能力随截雨干旱时间延长而增强。
杨甲定等[35]研究认为植物叶片衰老或进入休眠之前,或受到环境因子(水分供应等)影响,都会存在叶片氮素再吸收,且叶片对氮素养分的再吸收能力均随着林龄增大而下降。本研究发现,截雨干旱1年后,秋季、冬季1度竹叶片氮含量最高,4度竹最低。截雨干旱2年后,冬季1度竹叶片氮含量显著高于4度竹,这可能反映了截雨干旱1年后的秋季、冬季1度竹的叶片氮素养分的再吸收能力比4度竹高,较长时间干旱下冬季叶片更是如此。有研究表明截雨干旱下毛竹1度竹叶片最大净光合速率最低,随着竹龄增加最大净光合速率增加[36]。本研究截雨干旱2年后,春季和夏季1度竹叶片氮含量最低, 4度竹叶片氮含量最高,可能与干旱下处于生长旺盛季节的不同林龄毛竹叶片光合作用强度及其养分需求利用能力有关。本研究结果可为气候变化背景下基于毛竹叶片氮素分配的可持续经营提供理论基础。
参考文献(reference):
[1]庞进平,王永生.油菜幼苗光合及叶绿素荧光参数对干旱胁迫的响应及其抗旱性分析[J].西北植物学报,2023,43(2):276-284.PANG J P,WANG Y S.Photosynthetic and chlorophyll fluorescence responses of rape seedlings to drought stress and its drought resistance evaluation[J].Acta Bot Boreal-Occident Sin,2023,43(2):276-284.DOI: 10.7606/j.issn.1000-4025.2023.02.0276.
[2]刘晓娟,马克平.植物功能性状研究进展[J].中国科学:生命科学,2015,45(4):325-339.LIU X J,MA K P.Plant functional traits: concepts,applications and future directions[J].Sci Sin Vitae,2015,45(4):325-339.DOI: 10.1360/N052014-00244.
[3]夏蕾,吉卉,张家铱,等.降水差异对内蒙古温带草原植物根系和叶片功能性状的影响[J].西北植物学报,202 42(12):2112-2122.XIA L,JI H,ZHANG J Y,et al.Effects of different precipitation on root and leaf functional traits of plants in Inner Mongolia temperate steppe[J].Acta Bot Boreal-Occident Sin,202 42(12):2112-2122.DOI: 10.7606/j.issn.1000-4025.2022.12.2112.
[4]戚金存,刘大泉,刘泓,等.干旱胁迫及复水对槟榔幼苗形态和生理特性的影响[J].江苏农业学报,2024,40(4):615-624.QI J C,LIU D Q,LIU H,et al.Effects of drought stress and rehydration on the morphology and physiological characteristics of betel nut seedlings [J].Jiangsu J of Agr Sci,2024,40(4):615-624.DOI: 10.3969/j.issn.1000-4440.2024.04.005.
[5]景继鑫,陈灿阳,满秀玲,等. 大兴安岭北部主要乔木树种叶片-土壤碳氮磷生态化学计量特征 [J]. 森林工程, 2024, 40 (3): 1-10. JING J X, CHEN C Y, MAN X L, et al. The foliar-soil ecostoichiometric characteristics of the principal arboreal species in the northern region of the Greater Hinggan Mountains [J]. Forest Engineering, 2024, 40 (3): 1-10.
[6]岳喜元,左小安,庾强,等.降水量和短期极端干旱对典型草原植物群落及优势种羊草(Leymus chinensis) 叶性状的影响[J].中国沙漠,2018,38(5):1009-1016.YUE X Y,ZUO X A,YU Q,et al.Effects of precipitation and short term extreme drought on leaf traits in Inner Mongolia typical steppe[J].J Desert Res,2018,38(5):1009-1016.DOI: 10.7522/j.issn.1000-694X.2018.00031.
[7]LOZANO Y M,AGUILAR-TRIGUEROS C A,FLAIG I C,et al.Root trait responses to drought are more heterogeneous than leaf trait responses[J].Funct Ecol,2020,34(11):2224-2235.DOI: 10.1111/1365-2435.13656.
[8]LUONG J C,HOLL K D,LOIK M E.Leaf traits and phylogeny explain plant survival and community dynamics in response to extreme drought in a restored coastal grassland[J].J Appl Ecol,202 58(8):1670-1680.DOI: 10.1111/1365-2664.13909.
[9]马晓东,钟小莉,桑钰.干旱胁迫下胡杨实生幼苗氮素吸收分配与利用[J].生态学报,2018,38(20):7508-7519.MA X D,ZHONG X L,SANG Y.Characteristics of nitrogen absorption,distribution,and utilization by Populus euphratica seedlings under drought stress[J].Acta Ecol Sin,2018,38(20):7508-7519.DOI: 10.5846/stxb201711282136.
[10]唐晓鹿,范少辉,漆良华,等.采伐对幕布山区毛竹林土壤呼吸的影响[J].林业科学研究,2013,26(1):52-57.TANG X L,FAN S H,QI L H, et al.Effect of cutting on soil respiration in Phyllostachy edulis forest,Mubushan,China[J].For Res,2013,26(1):52-57.DOI: 10.13275/j.cnki.lykxyj.2013.01.013.
[11]WEN G S,ZHANG L Y,ZHANG R M,et al.Temporal and spatial dynamics of carbon fixation by Moso bamboo (Phyllostachys pubescens) in subtropical China[J].Bot Rev,201 77(3):271-277.DOI: 10.1007/s12229-011-9068-x.
[12]应叶青,郭璟,魏建芬,等.干旱胁迫对毛竹幼苗生理特性的影响[J].生态学杂志,201 30(2):262-266.YING Y Q,GUO J,WEI J F,et al.Effects of drought stress on physiological characteristics of Phyllostachys edulis seedlings[J].Chin J Ecol,201 30(2):262-266.DOI: 10.13292/j.1000-4890.2011.0059.
[13]袁佳丽,温国胜,张明如,等.毛竹快速生长期的水势变化特征[J].浙江农林大学学报,2015,32(5):722-728.YUAN J L,WEN G S,ZHANG M R,et al.Water potential with Phyllostachys edulis in its fast-growth periods[J].J Zhejiang A amp; F Univ,2015,32(5):722-728.DOI: 10.11833/j.issn.2095-0756.2015.05.010.
[14]曹永慧,周本智,王小明,等.冠层高度对毛竹叶片光合生理特性的影响[J].西北植物学报,2016,36(11):2256-2266.CAO Y H,ZHOU B Z,WANG X M,et al.Effects of canopy height on photosynthetic physiology characteristics of Phyllostachys pubescens leaves[J].Acta Bot Boreal-Occident Sin,2016,36(11):2256-2266.DOI: 10.7606/j.issn.1000-4025.2016.11.2256.
[15]汤靖文,李晨晞,彭政淋,等. 氮磷钾肥对水曲柳雌雄株叶片光合生理及化学计量特征的影响 [J]. 森林工程, 2023, 39 (2): 30-38,46. TANG J W, LI C X, PENG Z L, et al. Effects of nitrogen, phosphorus and potassium fertilizers on photosynthetic physiological and stoichiometric characteristics of male and female leaves of Fraxinus mandshurica[J]. Forest Engineering, 2023,39(2):30-38.
[16]顾小平,吴晓丽,汪阳东.毛竹林氮素营养诊断的研究[J].浙江林业科技,2004,24(2):1-4.GU X P,WU X L,WANG Y D.Study on nutrient diagnoses of Phyllostachys heterocycla var.pubescens stand[J].J Zhejiang For Sci Technol,2004,24(2):1-4.
[17]高培军,邱永华,周紫球,等.氮素施肥对毛竹生产力与光合能力的影响[J].浙江农林大学学报,2014,31(5):697-703.GAO P J,QIU Y H,ZHOU Z Q,et al.Productivity and photosynthetic ability of Phyllostachys edulis with nitrogen fertilization[J].J Zhejiang A amp; F Univ,2014,31(5):697-703.DOI: 10.11833/j.issn.2095-0756.2014.05.006.
[18]刘广路,范少辉,郭宝华,等.不同年龄毛竹碳氮磷化学计量特征[J].热带作物学报,2016,37(2):279-285.LIU G L,FAN S H,GUO B H,et al.The carbon,nitrogen and phosphorus contents of Phyllostachys edulis with different ages[J].Chin J Trop Crops,2016,37(2):279-285.DOI: 10.3969/j.issn.1000-2561.2016.02.011.
[19]程平,刘易鑫,罗运旺,等.不同施肥方法对毛竹氮素吸收、分配和利用的影响[J].南方林业科学,2017,45(3):35-38.CHENG P,LIU Y X,LUO Y W,et al.Effects on nitrogen absorption,distribution and utilization under different fertilization ways of Phyllostachys edulis[J].Nanfang For Sci,2017,45(3):35-38.DOI: 10.16259/j.cnki.36-1342/s.2017.03.010.
[20]KOMATSU H,ONOZAWA Y,KUME T,et al.Canopy conductance for a Moso bamboo (Phyllostachys pubescens) forest in western Japan[J].Agr Forest Meteorol,201 156:111-120.DOI: 10.1016/j.agrformet.2012.01.004.
[21]CAO Y H,ZHOU B Z,WANG X M,et al.The photosynthetic characteristics of Moso bamboo (Phyllostachys pubescens) for different canopy leaves[J].Adv Mater Res,2013,726-731:4274-4279.DOI: 10.4028/www.scientific.net/AMR.726-731.4274.
[22]杜满义,范少辉,刘广路,等.中国毛竹林碳氮磷生态化学计量特征[J].植物生态学报,2016,40(8):760-774.DU M Y,FAN S H,LIU G L,et al.Stoichiometric characteristics of carbon,nitrogen and phosphorus in Phyllostachys edulis forests of China[J].Chin J Plant Ecol,2016,40(8):760-774.DOI: 10.17521/cjpe.2015.0464.
[23]CHEN S M,HU T T,LUO L H,et al.Rapid estimation of leaf nitrogen content in apple-trees based on canopy hyperspectral reflectance using multivariate methods[J].Infrared Phys Techn,2020,111:103542.DOI: 10.1016/j.infrared.2020.103542.
[24]JIANG D L,YANG B L,CHENG X L,et al.The stoichiometry of leaf nitrogen and phosphorus resorption in plantation forests[J].Forest Ecol Manag,2020,483:118743.DOI: 10.1016/j.foreco.2020.118743.
[25]殷家扬.弃营年限对毛竹林生态系统林分结构因子和各碳库碳分配格局的影响[D].杭州:浙江农林大学,2020. YIN J Y.Effects of abandonment years on stand structure factors and carbon distribution patterns of carbon pools in a Moso bamboo forest ecosystem[D].Hangzhou:Zhejiang A amp; F University,2020.
[26]曹永慧,周本智,葛晓改,等.毛竹比叶质量时空变化及对截雨干旱的响应[J].林业科学研究,2019,32(6):31-39.CAO Y H,ZHOU B Z,GE X G,et al.Seasonal and canopy variation of leaf mass per area for Phyllostachys edulis leaves and its response to drought stress[J].For Res,2019,32(6):31-39.DOI: 10.13275/j.cnki.lykxyj.2019.06.005.
[27]黄双杰,曹梦珍,陈凌芝,等.氮素胁迫条件下茶树根系发育及生长素的响应[J].江苏农业学报,2023,39(3):814-821.HUANG S J,CAO M Z,CHEN L Z,et al.Auxin response and tea plant roots formation regulated by nitrogen stress [J].Jiangsu J" Agr Sci,2023,39(3):814-821.DOI: 10.3969/j.issn.1000-4440.2023.03.023.
[28]宗毓铮,杨琦,常翠翠,等.大气CO2浓度升高对干旱条件下冬小麦叶片光合适应的影响[J].应用生态学报,202 32(12):43704380.ZONG Y Z,YANG Q,CHANG C C,et al.Effects of elevated CO2 concentration on photosynthetic acclimation of winter wheat under drought condition[J].Chin J Appl Ecol,202 32(12):4370-4380.DOI: 10.13287/j.1001-9332.202112.014.
[29]方璇,王健,王彬,等.杉木N、P代谢对模拟土壤增温及隔离降雨的响应[J].生态学报,2019,39(10):35263536.FANG X,WANG J,WANG B,et al.Effects of simulated soil warming and precipitation exclusion on N and P metabolisms in Cunninghamia lanceolate[J].Acta Ecol Sin,2019,39(10):3526-3536.DOI: 10.5846/stxb201803220570.
[30]FULLANA-PERICS M,CONESA M ,DOUTHE C,et al.Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions[J].Agr Water Manage,2019,223:105722.DOI: 10.1016/j.agwat.2019.105722.
[31]程徐冰,韩士杰,张忠辉,等.蒙古栎不同冠层部位叶片养分动态[J].应用生态学报,201 22(9):2272-2278.CHENG X B,HAN S J,ZHANG Z H,et al.Nutrient dynamics in Quercus mongolica leaves at different canopy positions[J].Chin J Appl Ecol,201 22(9):2272-2278.DOI:10.13287/j.1001-9332.2011.0320.
[32]田俊霞,魏丽萍,何念鹏,等.温带针阔混交林叶片性状随树冠垂直高度的变化规律[J].生态学报,2018,38(23):8383-8391.TIAN J X,WEI L P,HE N P,et al.Vertical variation of leaf functional traits in temperate forest canopies in China[J].Acta Ecol Sin,2018,38(23):8383-8391.DOI: 10.5846/stxb201801020006.
[33]ARCHONTOULIS S V,VOS J,YIN X,et al.Temporal dynamics of light and nitrogen vertical distributions in canopies of sunflower,kenaf and cynara [J].Field Crop Res,201 122(3):186-198.DOI: 10.1016/j.fcr.2011.03.008.
[34]HALLIK L,NIINEMETS ,KULL O.Photosynthetic acclimation to light in woody and herbaceous species:a comparison of leaf structure,pigment content and chlorophyll fluorescence characteristics measured in the field[J].Plant Biology,201 14(1):88-99.DOI: 10.1111/j.1438-8677.2011.00472.x.
[35]杨甲定,刘雨节,冯建元,等.树木叶片衰老中的氮素再吸收机制研究进展[J].南京林业大学学报(自然科学版),2023,47(5):1-8.YANG J D,LIU Y J,FENG J Y,et al.Nitrogen resorption mechanism during leaf senescence in woody plants[J].J Nanjing For Univ (Nat Sci Ed),2023,47(5):1-8.DOI: 10.12302/j.issn.1000-2006.202212004.
[36]倪霞,吴思思,周本智,等.模拟干旱处理下毛竹光响应特征分析[J].南京林业大学学报(自然科学版),2018,42(2):47-51.NI X,WU S S,ZHOU B Z,et al.Light response characteristic of Phyllostachys edulis under drought treatment[J].J Nanjing For Univ (Nat Sci Ed),2018,42(2):47-51.DOI: 10.3969/j.issn.1000-2006.201611039.
(责任编辑 王国栋)