干旱荒漠区9个杏品种的花器官冻害生理生化分析
2024-12-31曾万祺韩多红冯军仁
摘要:【目的】测试干旱荒漠区9个杏品种的花器官生理生化指标,分析9个杏品种花器官的半致死温度,研究不同花器官抗寒性强弱,为选择抗寒栽培品种与抗寒育种提供依据。【方法】测试花器官电导率、SOD、POD生理生化指标,应用Excel表与DPS软件分析测试数据。【结果】杏品种雌蕊、雄蕊、花瓣半致死温度由高到低依次为花瓣>雄蕊>雌蕊;不同杏品种雌蕊、雄蕊、花瓣半致死温度由高到低依次为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏;不同低温处理下杏品种花蕾、花朵半致死温度由高到低依次为花蕾>花朵;不同杏品种已开放花器官、花蕾、花朵半致死温度由高到低依次均为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏;不同杏品种盛开花组织低温处理SOD活性变化趋势,随着处理温度由高到低,各品种雌蕊、雄蕊、花瓣的SOD活性值呈先低至高再降低的趋势,雌蕊、雄蕊出现高峰值的温度为-1℃,花瓣出现高峰值的温度除巴丹油杏、珍珠油杏、小树上干杏3个品种外-5℃仍为上升过程,其余品种在-1~-3℃;不同杏品种盛开花组织低温处理POD活性变化趋势,随着处理温度0、-1、-3和-5℃由高至低,各杏品种雌蕊、雄蕊、花瓣的SOD活性值呈低至高的趋势,雌蕊、雄蕊SOD活性值呈由低至高再降低的过程,出现高峰值的温度因品种抗寒性的不同而不同,巴丹油杏、珍珠油杏、小树上干杏、丰园红杏、杏王均为-3℃,凯特杏、红李广杏、李广杏均为-1℃,花瓣出现高峰值的温度除巴丹油杏、珍珠油杏、小树上干杏、丰园红杏在-5 ℃仍为上升过程,其余品种高分值在-1~-3℃。
【结论】9个杏品种花器官抗寒性大小依次为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏,霜冻年份,各杏品种实际冻害结果与生理测试分析基本一致。
关键词:干旱荒漠区;杏树;花器官;冻害
中图分类号:S662.2文献标志码:A文章编号:1001-4330(2024)09-2223-08
0引 言
【研究意义】杏树(Armeniaca vulgaris L.)为落叶乔木,是重要经济果树树种,杏营养丰富,含糖、蛋白质以及钙、磷等矿物质,还含有VA、VC和VB族等维生素[1-2]。杏树由于花芽休眠期短、春季开花早,花期和幼果期常遭遇低温和晚霜危害[3-4]。对于大部分杏树品种,因萌芽和花期抗御低温的能力降低,在花蕾期低于-3.9℃,花期低于-2.2℃,幼果期低于-0.6℃,低温时间超过30 min时,容易发生冻害[5]。【前人研究进展】近年来,我国在选育品质优、产量高、储运性好、特别是花果抗晚霜冻害能力强的新优杏品种育种方面取得了进展[6-7],其综合经济性状与生态适应性远优于国外引进的杏品种,如珍珠油杏的选育、新疆优选的小树上干杏等新品种的问世,花果高抗晚霜冻害,花蕾期能抗低于-10.9℃的低温,花期能耐零下4~6℃低温而不受冻害[8]。【本研究切入点】近几年在我国北方地区大面积推广的杏树良种花器官遭受低温胁迫后,需对杏花器官的抗冻性进行定量研究。【拟解决的关键问题】测试干旱荒漠区9个杏树品种花器官生理生化指标,研究杏花器官的抗冻机理,为杏树花器官抗冻能力鉴定、抗冻性育种以及良种推广提供理论依据。
1材料与方法
1.1材 料
试验在甘肃省张掖市石岗墩戈壁荒滩地珍珠油杏示范基地、山丹县示范点、临泽示范点进行,试验区海拔1 450~2 500 m,年均温度5.0~7.0℃,最高气温38.6℃,绝对低温-28.7~33.0℃,≥ 10℃有效积温2 500~2 896℃,年均降水129~350 mm,≥10℃年日照3 085 h,太阳总辅射量601.51 kJ/cm2,年均相对湿度46%,无霜期120~156 d,土质为砂质壤土,pH值7.8,肥力中等,该区域属典型的荒漠、半荒漠、干旱、半干旱气候。
在甘肃省壹加壹农牧业科技有限公司杏树良种示范基地内,选择6年生的巴丹油杏、珍珠油杏、小树上干杏、丰园红杏、杏王、金太阳杏、凯特杏、红李广杏、李广杏9个杏品种,株行距3×5(m),土壤为沙地,采取水肥一体化灌溉。
1.2方 法
1.2.1试验设计
2018年3月下旬至4月上旬,选取树势中庸,开花正常的样株5株,每品种采取花蕾期枝条100枝,带至实验室冷冻,花蕾枝设计处理温度为0、-5、-7、-9和-11℃;在4月下旬至5月中上旬盛花期期间,在各品种间选择无病虫害、长势均匀的开花枝条各100枝,立即进行冷冻处理,盛开花枝设计处理温度为0、-1、-3和-5℃;以上处理按2℃/h降至设计温度,保持30 min,对处理过的样枝随机取样,测试花瓣、雌蕊、雄蕊相对电导率、SOD、POD活性,记录花器官褐变情况,计算褐变率。
1.2.2测定指标
以花器官水浸状变褐色为受冻标准,褐变率%=受冻花器官数/调查花器官总数×100[9];用电导仪测定相对电导率[10-11];超氧化物歧化酶(SOD)用NBT显色法测定;过氧化物酶(POD)用愈创木酚法测定[12-13]。
1.3数据处理
应用SPSS 20.0统计分析软件进行数据分析,应用Excel 2016进行作图。
2结果与分析
2.19个杏品种花的褐变与LT50的分析
研究表明,不同低温处理下各杏品种花器雌蕊、雄蕊、花瓣半致死温度组织冻害由高到低依次为花瓣>雄蕊>雌蕊,花瓣的抗低温能力最强,雌蕊的最差;不同品种雌蕊半致死温度由高到低依次为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏;不同品种雄蕊半致死温度由高到低依次为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏;不同品种花瓣半致死温度由高到低依次为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏,杏花已开放花器官抗寒性由高到低依次为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏。表1
花蕾、花朵半致死温度由高到低依次为花蕾>花朵,花蕾的抗低温能力最强,花朵的较差;不同品种花蕾和花朵半致死温度由高到低依次均为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏。表2
2.29个杏品种盛开花组织低温处理下SOD的活性
研究表明,不同杏品种盛开花组织低温处理下的SOD活性随着处理温度0、-1、-3和-5℃由高到低,各品种雌蕊、雄蕊、花瓣的SOD活性值呈先低到高再降低的过程,雌蕊、雄蕊出现高峰值的温度为-1℃,花瓣出现高峰值的温度除巴丹油杏、珍珠油杏、小树上干杏在-5℃仍为上升过程,其余品种在-1~-3℃。杏品种花器官抗寒性越强,SOD活性值越高,SOD活性值出现高分值后下降则花器官受伤致死。图1
2.39个杏品种盛开花组织低温处理下POD的活性
研究表明,不同杏品种盛开花组织低温处理下POD的活性随着处理温度0、-1、-3、-5℃由高到低,各品种雌蕊、雄蕊、花瓣的POD活性值呈由低到高的过程,雌蕊、雄蕊POD活性值呈由低到高再到低的过程,出现高峰值的温度因品种抗寒性的不同而不同,巴丹油杏、珍珠油杏、小树上干杏、丰园红杏、杏王为-3℃,凯特杏、红李广杏、李广杏为-1℃,花瓣出现高峰值的温度除巴丹油杏、珍珠油杏、小树上干杏、丰园红杏在-5℃仍为上升过程,其余品种在-1~-3℃。不同杏品种花器官抗寒性越强,POD活性值越高,否则杏品种花器官抗寒性越差,POD活性值出现高分值后下降,花器官受伤致死。9个杏品种盛开花组织低温处理下POD活性变化趋势为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏 >红李广杏> 李广杏。图2
2.49个杏品种田间冻害调查
研究表明,9个杏品种中巴丹油杏未受冻,当年仍表现丰产,其花器官抗冻性极强;珍珠油杏、小树上干杏、丰园红杏受冻较重,减产70%~80%,其花器官抗冻性较强;金太阳杏、凯特杏、红李广杏、李广杏当年绝产,其花器官抗冻性差。表3
3讨 论
3.1杏各品种不同低温处理下花器组织冻害
雌蕊、雄蕊、花瓣半致死温度由高至低依次为花瓣>雄蕊>雌蕊,花瓣的抗低温能力最强,雌蕊的最差;不同品种雌蕊半致死温度由高到低依次为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏;不同品种雄蕊半致死温度由高到低依次为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏;不同杏品种花瓣半致死温度由高到低依次为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏,杏花已开放花器官抗寒性由高到低依次为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏。杏各品种不同低温处理下花蕾与花朵冻害分析结果表明,花蕾、花朵半致死温度由高到低依次为花蕾>花朵,花蕾的抗低温能力最强,花朵的较差;不同杏品种花蕾半致死温度由高到低依次为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏。
3.2不同杏品种盛开花组织低温处理SOD活性变化趋势
随着处理温度0、-1、-3和-5℃由高到低,各品种雌蕊、雄蕊、花瓣的SOD活性值呈先降低升高再降低的过程,雌蕊、雄蕊出现高峰值的温度为-1℃,花瓣出现高峰值的温度除巴丹油杏、珍珠油杏、小树上干杏3个品种外-5℃仍为上升过程,其余品种在-1~-3℃。说明杏品种花器官抗寒性越强,SOD活性值越高,否则杏品种花器官抗寒性越差,SOD活性值出现高分值后下降,同时说明花器官受伤致死[14-16]。
3.3不同杏品种盛开花组织低温处理POD活性变化趋势
随着处理温度0、-1、-3和-5℃由高到低,各品种雌蕊、雄蕊、花瓣的POD活性值呈由低到高的过程,雌蕊、雄蕊POD活性值呈由低升高再降低的过程,出现高峰值的温度因品种抗寒性的不同而不同,巴丹油杏、珍珠油杏、小树上干杏、丰园红杏、杏王为-3℃,凯特杏、红李广杏、李广杏为-1℃,花瓣出现高峰值的温度除巴丹油杏、珍珠油杏、小树上干杏、丰园红杏在-5℃仍为上升过程,其余品种在-1~-3℃。说明杏品种花器官抗寒性越强,POD活性值越高,否则杏品种花器官抗寒性越差,POD活性值出现高分值后下降,同时说明花器官受伤致死[17-18]。由盛开花组织低温处理POD活性9个品种变化趋势为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏。以新引进9个杏品种为材料,在低温下,通过测定花蕾与盛开花的电解质渗出率,运用Logistic方程,结合组织褐变观察,确定的花蕾与盛开花的LT50(半致死温度)与观察结果基本一致[19-20]。
4结 论
杏花蕾抵抗低温的范围为-7~-11℃,盛开花抵抗低温的范围为-3~-6℃,雌蕊抵抗低温的范围为-1~-2℃,雄蕊抵抗低温的范围-1~-3℃,花瓣低温的范围-3~-5℃。
9个杏品种抗寒性由大到小依次为巴丹油杏>珍珠油杏>小树上干杏>丰园红杏>杏王>金太阳杏>凯特杏>红李广杏>李广杏,霜冻年份各杏品种实际冻害结果基本一致。
参考文献(References)
[1]王根旺, 宋曦. 陇东黄土高原地区杏园土壤综合肥力对人工生草模式的响应及其环境解释[J]. 干旱地区农业研究, 2018, 36(4): 29-39.
WANG Genwang, SONG Xi. Response of integrated fertility of apricot orchard soil to artificial grass pattern and its environmental interpretation in the eastern Gansu Province of Loess Plateau[J]. Agricultural Research in the Arid Areas, 2018, 36(4): 29-39.
[2] 夏乐晗, 黄振宇, 刘红君, 等. 早熟优质杏新品种中杏3号的选育[J]. 果树学报, 2023, 40(8): 1774-1778.
XIA Yuehan, HUANG Zhenyu, LIU Hongjun, et al. Breeding report of a superior early-maturing apricot cultivar Zhongxing No.3[J]. Journal of Fruit Science, 2023, 40(8): 1774-1778.
[3] 杨向娜. 仁用杏生殖器官发育过程中抗寒生理机理研究[D]. 杨凌: 西北农林科技大学, 2006.
YANG Xiangna. Physlogical Determinatin of Cold Resistance of Kernel Apricot in Reproduction Organ Development[D]. Yangling: Northwest A amp; F University, 2006.
[4] 王连荣, 薛拥志, 常美花, 等. 外源激素对杏扁抗寒生理指标的影响[J]. 核农学报, 2016, 30(2): 396-403.
WANG Lianrong, XUE Yongzhi, CHANG Meihua, et al. Effects of exogenous hormones on cold resistant physiological index of kernel apricot[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(2): 396-403.
[5] 陈玉玲, 宋文清, 夏乐晗, 等. 杏树冻害的发生与防御措施[J]. 中国果树, 2021, (6): 65-67.
CHEN Yuling, SONG Wenqing, XIA Lehan, et al. Occurrence and prevention measures of freezing injury of apricot[J]. China Fruits, 2021, (6): 65-67.
[6] 章秋平, 刘威生. 杏种质资源收集、评价与创新利用进展[J]. 园艺学报, 2018, 45(9): 1642-1660.
ZHANG Qiuping, LIU Weisheng. Advances of the apricot resources collection, evaluation and germplasm enhancement[J]. Acta Horticulturae Sinica, 2018, 45(9): 1642-1660.
[7] 孙浩元, 张俊环, 杨丽, 等. 新中国果树科学研究70年——杏[J]. 果树学报, 2019, 36(10): 1302-1319.
SUN Haoyuan, ZHANG Junhuan, YANG Li, et al. Fruit scientific research in New China in the past 70 years: apricot[J]. Journal of Fruit Science, 2019, 36(10): 1302-1319.
[8] 王晓燕. 仁用杏优株花器官抗寒性研究[D]. 保定: 河北农业大学, 2010.
WANG Xiaoyan. Study of Cold Resistance of Floral Organ of Kernel Apricot Superior Strain[D]. Baoding: Hebei Agricultural University, 2010.
[9] 周书娟. 树上干杏种质资源遗传多样性及抗寒性研究[D]. 杨凌: 西北农林科技大学, 2011.
ZHOU Shujuan. A Study on the Genetic Diversity and Cold Resistance of Shuanggan Aprioct[D]. Yangling: Northwest A amp; F University, 2011.
[10] Yang X Z, Liu H Y, Zhao X H. Electrical conductivity measurements in piston cylinder press: metal shielding in the assembly design and implications[J]. Contributions to Mineralogy and Petrology, 2023, 178(3): 18.
[11] Darmawan D, Perdana D, Ismardi A, et al. Investigating the electrical properties of soil as an indicator of the content of the NPK element in the soil[J]. Measurement and Control, 2023, 56(1/2): 351-357.
[12] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 134-261.
LI Hesheng. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000: 134-261.
[13] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology, 1981: 867-880.
[14] 杨复康, 杨燕君, 宋永宏, 等. 不同杏品种抗寒性及生理指标[J]. 北方园艺, 2021, (3): 27-32.
YANG Fukang, YANG Yanjun, SONG Yonghong, et al. Cold resistance and physiological indexes of different apricot cultivars[J]. Northern Horticulture, 2021, (3): 27-32.
[15] 宁超, 孟庆瑞, 李淑贤, 等. 抗霜冻仁用杏优株花器官抗寒性的比较研究[J]. 河北农业大学学报, 2010, 33(3): 37-41.
NING Chao, MENG Qingrui, LI Shuxian, et al. Comparative study of cold resistance in Kernel-apricot germplasm floral organs[J]. Journal of Hebei Agricultural University, 2010, 33(3): 37-41.
[16] 王晓燕, 宁超, 宋庆丰, 等. 4个仁用杏优株抗寒性比较研究[J]. 安徽农业科学, 2010, 38(9): 4479-4481, 4485.
WANG Xiaoyan, NING Chao, SONG Qingfeng, et al. Comparative study on the hardiness of 4 excellent kernel apricot germplasm[J]. Journal of Anhui Agricultural Sciences, 2010, 38(9): 4479-4481, 4485.
[17] 何凤, 朱利利, 刘攀峰, 等. 杜仲无性系花芽的抗寒性测定与综合评价[J]. 中南林业科技大学学报, 2020, 40(9): 11-23.
HE Feng, ZHU Lili, LIU Panfeng, et al. Determination and comprehensive evaluation on cold resistance of flower bud in Eucommia ulmoides clone[J]. Journal of Central South University of Forestry amp; Technology, 2020, 40(9): 11-23.
[18] 丁红映, 王明, 谢洁, 等. 植物低温胁迫响应及研究方法进展[J]. 江苏农业科学, 2019, 47(14): 31-36.
DING Hongying, Wang Ming, Xie Jie, et al. Response to low temperature stress in plants and advances in research methods[J]. Jiangsu Agricultural Sciences, 2019, 47(14): 31-36.
[19] 周书娟, 王飞, 田治国, 等. 新疆‘树上干’杏耐寒株系的鉴定与筛选[J]. 园艺学报, 2011, 38(10): 1976-1982.
ZHOU Shujuan, WANG Fei, TIAN Zhiguo, et al. Screening cold hardy genetype of Xinjiang local apricot variety 'shushanggan’in China[J]. Acta Horticulturae Sinica, 2011, 38(10): 1976-1982.
[20] 王华, 王飞, 陈登文, 等. 低温胁迫对杏花SOD活性和膜脂过氧化的影响[J]. 果树学报, 2000, 17(3): 197-201.
WANG Hua, WANG Fei, CHEN Dengwen, et al. Effect of low temperature stress on SOD activity and membrane deroxidization of apricot flowers[J]. Journal of Fruit Science, 2000, 17(3): 197-201.
Physiological study of frost damage on flower organs of nine apricot varieties in arid desert area
ZENG Wanqi1, HAN Duohong2, FENG Junren3
(1. Academy of Water Resources Conservation Forests in Qilian Mountains of Gansu Province, Zhangye Gansu, 734000, China; 2. College of Life Sciences and Engineering,Hexi University,Zhangye Gansu, 734000,China; 3. Zhangye Academy of Forestry, Zhangye "Gansu 734000, China)
Abstract:【Objective】 To obtain the cold resistance of different flower organs and analyze the semi-lethal temperature of flower organs of 9 varieties by testing the physiological and biochemical indexes of flower organs of 9 apricot varieties in the hope of providing a basis for the selection of cold-resistant cultivation varieties and cold-resistant breeding.
【Methods】 The electrical conductivity of the flower organs, the physiological and biochemical indicators of SOD and POD were tested, and then the test data were analyzed with Excel table and DPS software.
【Results】 The sort of semi-fatal temperatures for pistils, stamens, and petals from high to low was petalsgt; stamensgt; pistils; the rating from high to low of the semi-fatal temperatures for pistils, stamens, and petals of different varieties were Prunus amygdalus Batsch gt; Armeniaca vulgaris Lam gt; Armeniaca vulgaris Lam gt; Prunus armemiaca gt; Armeniaca vulgaris Lam gt; Prunus armeniaca L gt; Prunus armeniaca L gt; Prunus armemiaca gt; Prunus armeniaca; Through the analysis results of frost damage on flower buds and flowers under different low temperature treatments, the sorts from high to low of the semi-fatal temperature of flower buds and flowers were flower buds gt; flowers; At the same time, it was also shown that, in different varieties of apricot flowers, the sort from high to low of the semi-lethal temperature of the opened flower organs, flower buds, and flowers was Prunus amygdalus Batsch gt; Armeniaca vulgaris Lam gt; Armeniaca vulgaris Lam gt; Prunus armemiaca gt; Armeniaca vulgaris Lam gt; Prunus armeniaca L gt; Prunus-armeniaca-L gt; Prunus armemiaca gt; Prunus armeniaca; the SOD activity of the flower tissues of different varieties changed from high to low. As the treatment temperature increased from high to low, the SOD activity values of each variety of pistils, stamens, and petals showed the tendency from low to high, the peak of the temperature of the pistils and stamens was -1℃, and the temperature of SOD peak for the petals was -5℃, except for the three varieties of "Prunus amygdalus Batsch、 Armeniaca vulgaris Lam, Armeniaca vulgaris Lam, which was still in an upward process. And those of the rest of the varieties were between -1 and -3℃; the POD activity of different apricot varieties changed. With treatment temperatures of 0, -1, -3 and -5℃ from high to low, the SOD activity values of each variety of pistils, stamens, and petals showed a process from low to high. The SOD activity values for pistils and stamens showed a process from low to high, then to low, the temperature of SOD peak varies according to the cold resistance of different varieties, the temperature of SOD peak of Prunus amygdalus Batsch, Armeniaca vulgaris Lam, and Armeniaca vulgaris Lam, Prunus armemiaca, Armeniaca vulgaris Lam was -3 ℃, the temperature of SOD peak of Prunus armeniaca L, Prunus armemiaca and Prunus armeniaca was -1℃. The temperature of SOD peak for the petals was -5℃, except for the varieties of Prunus amygdalus Batsch, Armeniaca vulgaris Lam, Armeniaca vulgaris Lam , Prunus armemiaca, which was still in an upward process. And the high values of the rest varieties were between -1℃-3℃.
【Conclusion】 The sort of the cold resistance of the nine varieties of floral organs is Prunus amygdalus Batsch gt; Armeniaca vulgaris Lam gt; Armeniaca vulgaris Lam gt; Prunus armemiaca gt; Armeniaca vulgaris Lam gt; Prunus armeniaca L gt; Prunus armeniaca L gt; Prunus armemiaca gt; Prunus armeniaca. In the frost year, the actual frost damage results of each variety are basically consistent with physiological test analysis.
Key words:arid desert area; apricot tree; flower organs; frost damage
Fund projects:The Natural Science Foundation Project of Gansu Province “Ecological Process of Root and Tiller Reproduction in Linze Jujube and Its Function Mechanism in Population Conservation and Restoration” (22JR5RG1028)
Correspondence author: HAN Duohong(1977-),male,from Zhangye,Gansun,associate professor,research direction:Oiversity of plant resources,plant stress physiology and biochemistry,(E-mail)handuohong@163.com
收稿日期(Received):2024-02-17
基金项目:甘肃省自然科学基金项目“临泽小枣根蘖繁殖生态过程及其在种群保护恢复中的作用机制”(22JR5RG1028)
作者简介:曾万祺(1968-),男,甘肃张掖人,高级工程师,研究方向为良种繁育,(E-mail)517344293@qq.com
通讯作者:韩多红(1977-),男,甘肃张掖人,副教授,硕士,研究方向为植物资源多样性、植物逆境生理生化,(E-mail)handuohong@163.com