APP下载

特应性皮炎影响因素及初级预防新进展

2024-11-19鲜墨胡秋蓉王万钧陈如冲李靖

新医学 2024年10期

【摘要】 特应性皮炎(AD)是一种常见的慢性炎症性皮肤病,表现为皮肤干燥、反复发作的瘙痒和湿疹样皮损,明显降低患者的生活质量。近年来,AD的患病率在中国显著增加。研究表明,多种空气污染物可通过氧化应激等多种机制损害皮肤屏障,增加AD的患病风险。饮食、过敏原等多种暴露因素也通过不同机制对AD的发生和进展产生显著影响。此外,心理因素如焦虑、压力等也可通过神经内分泌调节加重AD病情。肥胖与AD密切相关,尤其是儿童和青少年中。AD影响因素和机制的多样性提示需综合考虑多因素的初级预防策略。

【关键词】 特应性皮炎;影响因素;初级预防;环境;暴露;机制

New advances of influencing factors and primary prevention in atopic dermatitis

XIAN Mo¹,², HU Qiurong¹,², WANG Wanjun¹,², CHEN Ruchong¹,², LI Jing¹,²

(1. Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510160, China;2. State Key Laboratory of Respiratory Disease/National Clinical Research Center for Respiratory Disease/National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510160, China)

Corresponding author: LI Jing, E-mail: lijing@gird.cn

【Abstract】 Atopic dermatitis (AD) is a common chronic inflammatory skin disease characterized by dry skin, recurrent itching, and eczema-like lesions, which can significantly reduce the quality of life. In recent years, the global prevalence of AD has been increasing, with a particularly marked rise in China. Research has shown that air pollutants can damage the skin barrier through mechanisms like oxidative stress, thereby increasing the risk of AD. Various exposure factors, including diet and allergens, also significantly influence the onset and progression of AD through different mechanisms. Furthermore, psychological factors such as anxiety and stress can exacerbate AD through neuroendocrine regulation. Obesity is closely associated with AD, particularly among children and adolescents. Given the diversity of factors and mechanisms influencing AD, a comprehensive approach to primary prevention that considers multiple factors is warranted.

【Key words】 Atopic dermatitis; Influencing factors; Primary prevention;Environment; Exposure; Mechanism

特应性皮炎(atopic dermatitis, AD)又称“特应性湿疹”,是一种常见的慢性、炎症性全身性皮肤病[1]。AD临床表现为皮肤干燥、难治性瘙痒和湿疹样皮损,且反复发作,治愈率低,严重影响患者的生活质量[2]。近年来,AD的全球患病率呈上升趋势,其终生患病率远超过20%[3]。在欧洲,儿童AD的患病率为15%~20%,且在5%~10%的成年人中持续存在[4]。在加拿大总人口中AD的患病率为3.5%[5]。而在中国,儿童AD的患病率从2002年的3.07%增加到2014年的12.94%,且城市的患病率远高于农村地区[6-7]。根据第二次国际调查(AWARE 1)报告,中国内地(30.4%)和香港(22.9%)的成人AD患病率位居世界前列[8]。上述流行病学数据表明,儿童是AD的常见患者群体,AD也持续存在成人中。在中国,AD的流行趋势已变得十分严峻。

近年随着对AD这一“世界性现象”的深入研究,AD的影响因素和预防管理策略也日益受到重视[3]。环境因素在AD的致病因素中发挥了重要作用。反复的环境暴露及其相互作用、持续时间和暴露时机均会影响AD的发病和进展[9]。除此以外,其他暴露因素如饮食、心理、过敏原等因素也对AD发生和发展产生了重要的影响。本文探讨了AD的主要风险因素,并总结了当前有效的预防措施,以期能够为临床实践提供有价值的参考,降低AD的发生风险,并改善高危人群的生活质量。

1 特应性皮炎影响因素

1.1 空气污染

1.1.1 空气污染概况

尽管遗传因素是AD的较强风险因素,但近年AD患病率的大幅增加显然不能用单一的遗传因素来解释。反复的空气污染暴露及其相互作用、持续时间和暴露时机均会影响AD的发病和进展。相关的空气污染主要来源于城市化进程,包括机动车辆、生物燃烧、发电厂、制造设施等[10]。挥发性有机化合物(volatile organic compounds,VOCs)、颗粒物(particulate matter,PM)、交通相关的空气污染(traffic-related air pollution,TRAP)和烟草烟雾等被认为是空气污染物的主要成分。这些污染物可通过生成活性氧(reactive oxygen species,ROS)影响皮肤屏障的完整性,并促进T细胞适应性免疫极化为2型辅助性T细胞(T helper 2,Th2)表型[9]。

1.1.2 大气颗粒物

在空气污染物中,细颗粒物(particulate matter,PM)尤其是直径≤2.5 μm的细颗粒物(PM2.5)与AD的发生相关[12]。PM2.5和较粗(直径≤10 μm)的细颗粒物(PM10)水平的增加与AD患者的月度就诊次数增加有关,并且在婴儿期和儿童期的暴露危害更大[13-14]。空气中每增加10 μg/m³的PM2.5和PM10,AD的门诊就诊率就分别增加0.7%和0.9%[14-15]。

在高水平的PM2.5产前暴露下,婴儿期AD的发生率翻倍,也导致了幼儿期(3个月至8岁)皮炎评分指数(SCORing atopic dermatitis,SCORAD)评分的显著恶化[16]。多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是PM的重要组成部分,可以通过角质层扩散并与芳香烃受体(aryl hydrocarbon receptor,AhR)结合,促进细胞色素P450酶编码基因(CYP1A1)的转录,从而增加ROS的产生和炎症细胞因子的释放[17]。AhR信号通路也可以通过增强神经营养因子神经鞘胚素(Artemin)的产生来诱导瘙痒的过敏反应[18]。此外,PM2.5和PM10水平还与湿度呈负相关,湿度下降致使AD患者皮肤屏障缺陷和细胞因子增加,并促进经表皮水分丧失(trans-epidermal water loss,TEWL)[19]。

1.1.3 挥发性有机化合物

VOCs是由总烃(total hydrocarbons,THCs)组成的不稳定形式的物质。THCs包括非甲烷烃(non-methane hydrocarbons,NMHCs)和甲烷。随着全球工业化和城市化的发展,VOCs占全球能源消耗高达85%。室外环境中,VOCs和苯的增加与AD症状的增加有关[20],其中甲烷燃烧的中间体甲醛暴露可加重大鼠AD模型中的瘙痒和皮肤炎症[21]。而在室内环境中,产前及出生后前几年由装修(如涂漆、地板覆盖、家具更新等)引起的高VOCs水平与后代AD的终生患病率明显相关[22]。在致病机制方面,有研究表明产前暴露于VOCs可能诱导Th2主导的免疫状态[23],且暴露于VOCs可能通过尚未确定的机制增加TEWL[24]。此外,与PM类似,VOCs也可激活配体激活的转录因子AhR,导致下游炎症和瘙痒介质如神经鞘胚素激活[18]。

1.1.4 交通相关的空气污染

TRAP中的关键气态化合物包括二氧化硫(sulfur dioxide,SO2)、一氧化碳(carbon monoxide,CO)、二氧化氮(nitrogen dioxide,NO2)和臭氧(ozone,O3)。其中,SO2、NO2和CO的短期暴露与AD门诊就诊率的增加显著相关[15]。O3暴露对AD风险的影响仍然存在争议。例如,有研究者发现O3可能导致AD门诊就诊增加,这与其他研究的结论相矛盾[25-27]。TRAP对AD的可能潜在机制:TRAP会导致皮肤氧化应激,并通过促进TEWL、炎症信号转导、角质层pH值和皮肤微生物群失调而破坏皮肤屏障的完整性,从而加重AD[28-29]。

1.1.5 烟草及新型烟草制品

主动吸烟和被动吸烟均与儿童和青少年的AD相关。每月吸烟超过20 d的青少年比不吸烟者更容易患AD(校正OR为1.18,95% CI为1.07~1.29)[30]。产前暴露于烟草烟雾也被认为是AD的重要风险因素[31]。除了传统烟草,越来越多新型烟草制品的使用在全球范围内引起了公众对公共健康的关注。例如,使用电子烟(e-cigarettes)和加热烟草制品(heated tobacco products,HTP)也与AD、哮喘和过敏性鼻炎等多病共病的增加风险显著相关。具体机制并不完全清楚,但有关烟草对生命早期影响的研究表明,高水平的miR-223表达与母体和脐带血中调节性T细胞(T regulatory cell,Treg)减少相关,导致在生命的前3年内罹患AD的风险较高。以上研究结果提示,烟草中的VOCs可能通过抑制Treg和改变miRNA表达水平诱发AD[32]。

1.2 饮食和肥胖

常见于西方饮食中的反式脂肪酸(trans fatty acids, TFA)的摄入与AD患病率的增加有关[33],但其具体机制尚未完全明确。有研究报道,未经过巴氏杀菌的牛奶在西方农场人群中显示出与AD症状减少的相关性,可能与革兰阴性菌和乳酸杆菌的保护作用有关。然而,这种关联能否证实其因果关系仍然存疑[34]。母乳喂养尤其是专一母乳喂养,对早期AD有保护作用,这可能与母乳中微生物群和免疫活性介质[如转化生长因子-β(transforming growth factor-β,TGF-β)和免疫球蛋白A(immunoglobulin A,IgA)]的传递有关[35-37]。此外,植物性食品如蔬菜、水果和谷物,可能通过提供抗氧化营养素和植物化学物质(如类黄酮、类胡萝卜素等),降低AD的发生风险[38]。对于糖类特别是含糖饮料的摄入,则可能增加AD的风险,并与儿童早期AD的发病相关[39]。其涉及机制主要包括3种:①调节儿童机制,即孕期含糖饮料摄入可导致后代的甜食偏好以及从甜食中摄入的热量比更高;②晚期糖基化终产物(advanced glycation end-products, AGEs)机制;③肠道菌群失调机制[40],见图1。值得注意的是,关于益生元、益生菌等饮食补充剂在AD中的作用仍存在争议[41-43]。相关研究结果也表现出高度的差异性,包括干预(制剂、剂量、持续时间和施用时间)、研究人群和记录终点的时间。此外,关于益生元和益生菌效果的讨论越来越多地伴随着对安全性的争议。例如在新生儿等脆弱的群体,益生菌的使用可能导致感染和败血症。其对AD的长期影响及安全性仍需进一步的研究来证实。

鉴于饮食和肥胖的紧密联系,研究表明肥胖也与AD之间存在明确的关联。例如婴儿低出生体质量是AD的保护因素,而高出生体质量则是风险因素[44]。儿童和青少年的体质量指数(body mass index, BMI)和腹围逐年增加是AD的危险因素[45-46]。相关机制可能包括以下几种:①与肠道菌群相关。例如中度或重度AD患者中常见肠道微生物群失衡,肠道黏膜屏障被破坏,致病性革兰阴性菌过度繁殖,导致细菌移植和内毒素转位,从而激活系统性免疫炎症反应。②与血脂水平相关。已有研究显示,儿童AD的发生率和严重程度与血脂水平异常有关[47]。每增加5%的体脂,包括AD在内的过敏性疾病风险增加28%[48]。③肥胖可导致皮肤屏障异常。肥胖可导致经皮水分流失增加、皮肤干燥、胶原结构变化和伤口愈合不良,从而加重AD患者的皮肤功能障碍。此外,近年研究者发现肥胖除诱导Th2型炎症反应外,还可通过降低过氧化物酶体增殖激活受体-γ (peroxisome proliferator-activated receptor-γ,PPAR-γ)的活性而诱导Th17炎症,从而导致难治性AD[47]。

1.3 过敏原

1.3.1 气传性过敏原

AD特征为上皮屏障功能障碍,一旦发生过敏反应,气传性过敏原的经皮暴露会持续引发炎症,导致过敏性炎症的慢性化。屋尘螨(house dust mite,HDM)过敏原,特别是屋尘螨过敏原组分2(dermatophagoides pteronyssinus group 2,Der p 2),通过增强AD的标志性特征(如皮肤炎症、屏障破坏和角质形成细胞增生) 促进AD的发生和加重[50]。另一种重要过敏原是Der p 38,它是一种新型的HDM过敏原,通过减少皮肤屏障蛋白质和增加炎性细胞来引发AD。在人类角质形成细胞HaCaT中,Der p 38导致了丝聚蛋白(filaggrin,FLG)表达的下调,并通过Toll样受体4(Toll-like receptor 4,TLR4)、磷脂酰肌醇3-激酶(phosphoinositide 3-kinases,PI3K)、蛋白激酶B(protein kinase B,AKT)、c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)和核因子-κB(nuclear factor-kappa B,NF-κB)通路诱导了白介素-6(interleukin-6,IL-6)、IL-8和单核细胞趋化蛋白(monocyte chemoattractant

protein,MCP)-1等促炎细胞因子,导致AD的产生[51]。对于其他气传性过敏原,接触草花粉也会显著加重AD[52]。尽管各种流行病学研究表明,在出生后的前1年,家庭中养狗会对食物过敏和学龄期(6~13岁)的儿童哮喘发展具有保护作用[53],但目前尚无直接证据可证实早期接触宠物过敏原与AD之间的关系。

1.3.2 食物过敏原

食物过敏原的敏感性与AD初始诊断年龄段有很强的相关性。初始诊断AD年龄越小,食物过敏的可能性越大,特别是鸡蛋与花生过敏[54]。FLG功能缺失突变的遗传与AD的早发有关,这表明基因与环境相互作用可能与过敏原敏感性有关[55]。此外,AD与食物敏感性以及FA之间存在强烈且剂量依赖性的关联,AD的严重性和慢性与食物过敏原种类相关,并且在早期对食物多重敏感的AD儿童似乎具有较高的其他过敏性疾病发展风险[56]。这些发现提示,过敏原的敏感化可能影响整个皮肤屏障,导致AD的慢性症状和屏障损害持续,引起多重敏感反应,并促进过敏性多病共存的发展。

1.4 心理神经因素

AD对心理压力(如焦虑等)的生物学机制涉及神经内分泌调节物质的分泌和皮肤瘙痒感受器的敏感化(即最小的刺激会导致增强的神经反应),导致慢性瘙痒-抓挠循环,从而破坏皮肤屏障。心理压力通过下丘脑-垂体-肾上腺(hypothalamic-pituitary-adrenal, HPA)轴诱导中枢应激反应,导致糖皮质激素和瘙痒原(如物质P)的分泌[11]。这可能导致对Th1介导细胞免疫的选择性抑制,并触发向Th2介导体液免疫的转变。除组胺外,其他内源性和外源性因素也会导致非组胺性瘙痒,如物质P、胸腺基质淋巴细胞生成素(thymic stromal lymphopoietin, TSLP) 和Notch蛋白。

Th2产生的IL-31在诱导瘙痒中的作用受到广泛关注。IL-31主要由Th2产生,是一种强效的瘙痒原细胞因子,而通过单克隆抗体阻断IL-31受体在临床AD试验中被认为能有效缓解瘙痒[57-58]。靶向IL-31受体光学消融可长期减少瘙痒,并选择性地抑制皮肤瘙痒原神经元[59]。

2 特应性皮炎的初级预防

由于AD往往是过敏进程(allergic march)首个环节,因此其初级预防至关重要。它包括消除或减少疾病发展重要的(或部分)原因,改变环境和工作场所相关因素,提高个体的耐受性。初级预防主要针对高风险群体(如具有遗传易感性的人群),但也面向普通人群,包括过敏特定的健康促进方面。

2.1 饮食建议

目前包括EAACI在内的指南均不建议在孕期和哺乳期对母亲饮食(包括潜在过敏原)进行限制[60-62]。并且建议在可能的情况下,前4~6个月应进行母乳喂养,在引入辅食后仍需继续母乳喂养[63]。同时应避免在出生后的几天内补充牛奶基婴儿配方奶,直到引入辅食[61]。EAACI指南还建议通过引入和定期给予彻底加热(例如烘烤或煮熟)的鸡蛋而非“生”鸡蛋(也不包括炒鸡蛋)来预防鸡蛋过敏[62]。对于花生,可以考虑在辅食中定期添加适合年龄的含花生成分食物(例如花生酱,因有窒息风险不建议食用整颗花生或花生块),但要非常谨慎。对于中重度AD的婴儿,还需在引入花生前排除花生过敏[64]。其他方面,目前仍然支持减少糖分及含糖饮料的摄入,并在怀孕和哺乳期间维持均衡、多样化和营养丰富的饮食,包括蔬菜、牛奶和乳制品(如酸奶)、水果、坚果、鸡蛋和鱼[61]。由于矛盾性甚至相反的结果,目前仍难以对益生元或益生菌等食品补充剂制定出具体的推荐意见。

2.2 减少空气污染风险

对于室外空气污染,世界卫生组织(World Health Organization, WHO)建议有效减少空气污染物排放的措施有以下几种:① 减少工业烟囱排放的清洁技术,改善城市和农业废物管理,包括将废物场产生的甲烷气体收集作为生物气体替代焚烧处理;② 转向清洁的电力生产模式,优先考虑城市快速公共交通、步行和骑行网络以及城市间的铁路货运和客运,从重型柴油车转向低排放车辆和燃料,包括低硫含量的燃料;③ 改善建筑的布局,使城市更加紧凑,从而提高能源利用效率;④ 增加低排放燃料和可再生无燃烧电力来源的使用(如太阳能、风能或水电),热电联产以及分布式能源生产(如微电网和屋顶太阳能发电)[65]。

对于室内污染物,人们可以通过安装空气过滤装置和其他改善室内空气质量的方法来降低AD的发生率和减轻AD症状的严重性。这些可能方法包括:①清除墙壁和天花板上的细尘、蜘蛛网和霉菌孢子;②通过消除尘螨和漂浮物以及蒸汽清洗床上用品,减少细尘、霉菌和尘螨等[66]。

2.3 保湿剂应用

作为AD的主要预防管理策略,保湿剂效果的证据仍然存在矛盾。早期研究显示,预防性应用外用保湿剂可能防止AD的发生[67-69]。但随后的大型随机对照试验报告早期皮肤保湿剂应用并未减少12个月时AD的发展,且有证据表明保湿剂的使用反而增加了皮肤感染的风险[70-72]。这些矛盾可能与试验中针对的亚群体不同有关,例如在健康群体中预防性使用和在高风险群体使用可能得到不一致结论。此外是否持续使用保湿剂、药膏配方选择的不同,也可能导致争议性的结果。如神经酰胺基保湿剂在减少经皮水分流失方面更有效,而以花生油为基础的药膏则可能加重AD[73]。总体而言,要取得成功的过敏预防效果,保湿剂在实际应用中应考虑不同风险人群(例如在高风险人群中应用)、药膏配方(考虑神经酰胺基保湿剂)以及治疗持续时间等多种因素的影响。

2.4 心理干预

针对瘙痒-抓挠循环行为及其相关心理健康共病的心理干预可能改善这些结果以及疾病严重程度。例如习惯逆转训练、放松训练和认知行为疗法在治疗慢性瘙痒方面已显示出成功[74]。另外,心理皮肤病学联合门诊可以改善瘙痒-抓挠的临床结果以及健康相关生活质量[75]。

3 结语与展望

AD可能受到环境因素、饮食、过敏原、心理压力和肥胖等多种因素的影响,涉及的机制复杂多样。综合理解和管理这些影响因素对于AD的预防至关重要。尽管某些预防措施可能存在争议,例如益生菌等。但总体而言,针对空气污染、过敏原、饮食和心理因素等的综合初级预防措施,有望为降低AD患病率提供良好的干预和管理策略。

参 考 文 献

[1] 冯佩英. 生物制剂治疗特应性皮炎和特应性共病的研究进展[J]. 中山大学学报(医学科学版), 2022, 43(1): 1-9. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci) . 2022.0101.

FENG P Y. Biological agents in the treatment of atopic dermatitis and atopic comorbidities: a review and update[J]. J Sun Yat-sen Univ (Med Sci), 2022, 43(1): 1-9. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci) . 2022.0101.

[2] 蔡宝祥, 朱健伟, 陈艳, 等. 特应性皮炎患者血浆外泌体miR-21和lncRNA MALAT1的检测水平及意义[J]. 中华全科医学, 2022, 20(3): 403-406, 418. DOI: 10.16766/j.cnki.issn.1674-4152.002363.

CAI B X, ZHU J W, CHEN Y, et al. Detection and significance of plasma exosomes miR-21 and lncRNA MALAT1 in patients with atopic dermatitis[J]. Chin J Gen Pract, 2022, 20(3): 403-406, 418. DOI: 10.16766/j.cnki.issn.1674-4152.002363.

[3] BONAMONTE D, FILONI A, VESTITA M, et al. The role of the environmental risk factors in the pathogenesis and clinical outcome of atopic dermatitis[J]. Biomed Res Int, 2019, 2019: 2450605. DOI: 10.1155/2019/2450605.

[4] HÜLPÜSCH C, WEINS A B, TRAIDL-HOFFMANN C, et al. A new era of atopic eczema research: advances and highlights[J]. Allergy, 2021, 76(11): 3408-3421. DOI: 10.1111/all.15058.

[5] MORTZ C G, ANDERSEN K E, DELLGREN C, et al. Atopic dermatitis from adolescence to adulthood in the TOACS cohort: prevalence, persistence and comorbidities[J]. Allergy, 2015, 70(7): 836-845. DOI: 10.1111/all.12619.

[6] 顾恒, 尤立平, 刘永生, 等. 我国10城市学龄前儿童特应性皮炎现况调查[J]. 中华皮肤科杂志, 2004, 37(1): 29-31.

GU H, YOU L P, LIU Y S, et al. Survey on the prevelence of childhood atopic dermatitis in ten cities of China[J]. Chin J Dermatol, 2004, 37(1): 29-31.

[7] GUO Y, LI P, TANG J, et al. Prevalence of atopic dermatitis in Chinese children aged 1-7 ys[J]. Sci Rep, 2016, 6: 29751. DOI: 10.1038/srep29751.

[8] MASPERO J, DE PAULA MOTTA RUBINI N, ZHANG J, et al. Epidemiology of adult patients with atopic dermatitis in AWARE 1: a second international survey[J]. World Allergy Organ J, 2023, 16(3): 100724. DOI: 10.1016/j.waojou.2022.100724.

[9] CECCHI L, D’AMATO G, ANNESI-MAESANO I. External exposome and allergic respiratory and skin diseases [J]. J Allergy Clin Immunol, 2018, 141(3): 846-857. DOI: 10.1016/

j.jaci.2018.01.016.

[10] LAI A, OWENS K, PATEL S, et al. The impact of air pollution on atopic dermatitis[J]. Curr Allergy Asthma Rep, 2023,

23(8): 435-442. DOI: 10.1007/s11882-023-01095-w.

[11] STEFANOVIC N, IRVINE A D, FLOHR C. The role of the environment and exposome in atopic dermatitis[J]. Curr Treat Options Allergy, 2021, 8(3): 222-241. DOI: 10.1007/s40521-021-00289-9.

[12] PARK S K, KIM J S, SEO H M. Exposure to air pollution and incidence of atopic dermatitis in the general population: a national population-based retrospective cohort study[J]. J Am Acad Dermatol, 2022, 87(6): 1321-1327. DOI: 10.1016/j.jaad.2021.05.061.

[13] PARK T H, PARK S, CHO M K, et al. Associations of particulate matter with atopic dermatitis and chronic inflammatory skin diseases in South Korea[J]. Clin Exp Dermatol, 2022, 47(2): 325-334. DOI: 10.1111/ced.14910.

[14] LUO P, WANG D, LUO J, et al. Relationship between air pollution and childhood atopic dermatitis in Chongqing, China: a time-series analysis[J]. Front Public Health, 2022, 10: 990464. DOI: 10.3389/fpubh.2022.990464.

[15] GUO Q, LIANG F, TIAN L, et al. Ambient air pollution and the hospital outpatient visits for eczema and dermatitis in Beijing: a time-stratified case-crossover analysis[J]. Environ Sci Process Impacts, 2019, 21(1): 163-173. DOI: 10.1039/c8em00494c.

[16] LIU W, CAI J, HUANG C, et al. Associations of gestational and early life exposures to ambient air pollution with childhood atopic eczema in Shanghai, China[J]. Sci Total Environ, 2016, 572: 34-42. DOI: 10.1016/j.scitotenv.2016.07.197.

[17] TOTLANDSDAL A I, HERSETH J I, BØLLING A K, et al. Differential effects of the particle core and organic extract of diesel exhaust particles[J]. Toxicol Lett, 2012, 208(3): 262-268. DOI: 10.1016/j.toxlet.2011.10.025.

[18] HIDAKA T, OGAWA E, KOBAYASHI E H, et al. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin[J]. Nat Immunol, 2017, 18(1): 64-73. DOI: 10.1038/ni.3614.

[19] SATO J, DENDA M, CHANG S, et al. Abrupt decreases in environmental humidity induce abnormalities in permeability barrier homeostasis[J]. J Invest Dermatol, 2002, 119(4): 900-904. DOI: 10.1046/j.1523-1747.2002.00589.x.

[20] KIM J, KIM E H, OH I, et al. Symptoms of atopic dermatitis are influenced by outdoor air pollution[J]. J Allergy Clin Immunol, 2013, 132(2): 495-498.e1. DOI: 10.1016/j.jaci.2013.04.019.

[21] HAN R T, BACK S K, LEE H, et al. Formaldehyde-induced aggravation of pruritus and dermatitis is associated with the elevated expression of Th1 cytokines in a rat model of atopic dermatitis[J]. PLoS One, 2016, 11(12): e0168466. DOI: 10.1371/journal.pone.0168466.

[22] HERBARTH O, FRITZ G J, REHWAGEN M, et al. Association between indoor renovation activities and eczema in early childhood[J]. Int J Hyg Environ Health, 2006, 209(3): 241-247. DOI: 10.1016/j.ijheh.2006.01.003.

[23] LEHMANN I, THOELKE A, REHWAGEN M, et al. The influence of maternal exposure to volatile organic compounds on the cytokine secretion profile of neonatal T cells[J]. Environ Toxicol, 2002, 17(3): 203-210. DOI: 10.1002/tox.10055.

[24] HUSS-MARP J, EBERLEIN-KÖNIG B, BREUER K, et al. Influence of short-term exposure to airborne Der p 1 and volatile organic compounds on skin barrier function and dermal blood flow in patients with atopic eczema and healthy individuals[J]. Clin Exp Allergy, 2006, 36(3): 338-345. DOI: 10.1111/j.1365-2222.2006.02448.x.

[25] LIU M, HUANG Y, MA Z, et al. Spatial and temporal trends in the mortality burden of air pollution in China: 2004-

2012 [J]. Environ Int, 2017, 98: 75-81. DOI: 10.1016/j.envint.

2016.10.003.

[26] WANG X W, TIAN Y H, CAO Y Y, et al. Association between fine particulate air pollution and outpatient visits for eczema in Beijing, China: a time-series analysis[J]. Biomed Environ Sci, 2019, 32(8): 624-627. DOI: 10.3967/bes2019.080.

[27] WANG I J, TUNG T H, TANG C S, et al. Allergens, air pollutants, and childhood allergic diseases[J]. Int J Hyg Environ Health, 2016, 219(1): 66-71. DOI: 10.1016/j.ijheh.2015.09.001.

[28] HASSOUN Y, JAMES C, BERNSTEIN D I. The effects of air pollution on the development of atopic disease[J]. Clin Rev Allergy Immunol, 2019, 57(3): 403-414. DOI: 10.1007/s12016-019-08730-3.

[29] HINZ D, BAUER M, RÖDER S, et al. Cord blood Tregs with stable FOXP3 expression are influenced by prenatal environment and associated with atopic dermatitis at the age of one year[J].

Allergy, 2012, 67(3): 380-389. DOI: 10.1111/j.1398-9995.2011.02767.x.

[30] KIM S Y, SIM S, CHOI H G. Atopic dermatitis is associated with active and passive cigarette smoking in adolescents[J]. PLoS One, 2017, 12(11): e0187453. DOI: 10.1371/journal.pone.0187453.

[31] YI O, KWON H J, KIM H, et al. Effect of environmental tobacco smoke on atopic dermatitis among children in Korea[J]. Environ Res, 2012, 113: 40-45. DOI: 10.1016/j.envres.2011.12.012.

[32] HERBERTH G, BAUER M, GASCH M, et al. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers[J]. J Allergy Clin Immunol, 2014, 133(2): 543-550. DOI: 10.1016/j.jaci.2013.06.036.

[33] ELLWOOD P, ASHER M I, BJÖRKSTÉN B, et al. Diet and asthma, allergic rhinoconjunctivitis and atopic eczema symptom prevalence: an ecological analysis of the International Study of Asthma and Allergies in Childhood (ISAAC) data. ISAAC Phase One Study Group[J]. Eur Respir J, 2001, 17(3): 436-443. DOI: 10.1183/09031936.01.17304360.

[34] PERKIN M R, STRACHAN D P. Which aspects of the farming lifestyle explain the inverse association with childhood allergy [J].

J Allergy Clin Immunol, 2006, 117(6): 1374-1381. DOI: 10.1016/j.jaci.2006.03.008.

[35] KRAMER M S, CHALMERS B, HODNETT E D, et al. Promotion of Breastfeeding Intervention Trial (PROBIT): a randomized trial in the Republic of Belarus[J]. JAMA, 2001, 285(4): 413-420. DOI: 10.1001/jama.285.4.413.

[36] FLOHR C, HENDERSON A J, KRAMER M S, et al. Effect of an intervention to promote breastfeeding on asthma, lung function, and atopic eczema at age 16 years: follow-up of the PROBIT randomized trial[J]. JAMA Pediatr, 2018, 172(1): e174064. DOI: 10.1001/jamapediatrics.2017.4064.

[37] PFEFFERLE P I, BÜCHELE G, BLÜMER N, et al. Cord blood cytokines are modulated by maternal farming activities and consumption of farm dairy products during pregnancy: the PASTURE Study[J]. J Allergy Clin Immunol, 2010, 125(1): 108-115.e1-3. DOI: 10.1016/j.jaci.2009.09.019.

[38] LIM J J, REGINALD K, SAY Y H, et al. A dietary pattern of frequent plant-based foods intake reduced the associated risks for atopic dermatitis exacerbation: insights from the Singapore/Malaysia cross-sectional genetics epidemiology cohort[J]. BMC Public Health, 2023, 23(1): 1818. DOI: 10.1186/s12889-023-16736-y.

[39] GUPTA A, SINGH A, FERNANDO R L, et al. The association between sugar intake during pregnancy and allergies in offspring: a systematic review and a meta-analysis of cohort studies[J]. Nutr Rev, 2022, 80(4): 904-918. DOI: 10.1093/nutrit/nuab052.

[40] MUNIZ A K O A, VIANNA E O, PADILHA L L, et al. Sugar-sweetened beverages and Allergy traits at second year of life: brisa cohort study[J]. Nutrients, 2023, 15(14): 3218. DOI: 10.3390/nu15143218.

[41] FIOCCHI A, PAWANKAR R, CUELLO-GARCIA C, et al. World allergy organization-McMaster university guidelines for allergic disease prevention (GLAD-P): probiotics[J]. World Allergy Organ J, 2015, 8(1): 4. DOI: 10.1186/s40413-015-0055-2.

[42] KRZYCH-FAŁTA E, FURMAŃCZYK K, TOMASZEWSKA A, et al. Probiotics: myths or facts about their role in allergy prevention[J]. Adv Clin Exp Med, 2018, 27(1): 119-124. DOI: 10.17219/acem/65476.

[43] ZHANG G Q, HU H J, LIU C Y, et al. Probiotics for prevention of atopy and food hypersensitivity in early childhood: a PRISMA-compliant systematic review and meta-analysis of randomized controlled trials[J]. Medicine, 2016, 95(8): e2562. DOI: 10.1097/MD.0000000000002562.

[44] PANDURU M, SALAVASTRU C M, PANDURU N M, et al. Birth weight and atopic dermatitis: systematic review and meta-analyis[J]. Acta Dermatovenerol Croat, 2014, 22(2): 91-96.

[45] 王晓红, 赵天旺, 雷朝秋, 等. 中国1993—2015年儿童青少年腰围及腹型肥胖流行趋势[J]. 中国学校卫生, 2020, 41(6):

897-900. DOI: 10.16835/j.cnki.1000-9817.2020.06.026.

WANG X H, ZHAO T W, LEI C Q, et al. Recent trends in waist circumference and central obesity in Chinese children and adolescence during 1993-2015[J]. Chin J Sch Health, 2020,

41(6): 897-900. DOI: 10.16835/j.cnki.1000-9817.2020.06.026.

[46] SILVERBERG J I, BECKER L, KWASNY M, et al. Central obesity and high blood pressure in pediatric patients with atopic dermatitis[J]. JAMA Dermatol, 2015, 151(2): 144-152. DOI: 10.1001/jamadermatol.2014.3059.

[47] LEIGH J H, PARK H J, CHUN S M, et al. Association of atopic dermatitis with dyslipidemia in adolescents: a cross-sectional study[J]. Ann Dermatol, 2021, 33(5): 483-485. DOI: 10.5021/ad.2021.33.5.483.

[48] IREI A V, TAKAHASHI K, LE D S, et al. Obesity is associated with increased risk of allergy in Vietnamese adolescents[J]. Eur J Clin Nutr, 2005, 59(4): 571-577. DOI: 10.1038/sj.ejcn.1602120.

[49] BAPAT S P, WHITTY C, MOWERY C T, et al. Obesity alters pathology and treatment response in inflammatory disease[J]. Nature, 2022, 604(7905): 337-342. DOI: 10.1038/s41586-022-04536-0.

[50] PFISTERER K, WIELSCHER M, SAMARDZIC D, et al. Non-IgE-reactive allergen peptides deteriorate the skin barrier in house dust mite-sensitized atopic dermatitis patients[J]. Front Cell Dev Biol, 2023, 11: 1240289. DOI: 10.3389/fcell.2023.1240289.

[51] JEON H, KIM G, KASHIF A, et al. Pathogenic mechanism of der p 38 as a novel allergen homologous to RipA and RipB proteins in atopic dermatitis[J]. Front Immunol, 2021, 12: 646316. DOI: 10.3389/fimmu.2021.646316.

[52] WERFEL T, HERATIZADEH A, NIEBUHR M, et al. Exacerbation of atopic dermatitis on grass pollen exposure in an environmental challenge chamber[J]. J Allergy Clin Immunol, 2015, 136(1): 96-103.e9. DOI: 10.1016/j.jaci.2015.04.015.

[53] AL-TAMPROURI C, MALIN B, BILL H, et al. Cat and dog ownership during/after the first year of life and risk for sensitization and reported allergy symptoms at age 13[J]. Immun Inflamm Dis, 2019, 7(4): 250-257. DOI: 10.1002/iid3.267.

[54] MARTIN P E, ECKERT J K, KOPLIN J J, et al. Which infants with eczema are at risk of food allergy: results from a population-based cohort[J]. Clin Exp Allergy, 2015, 45(1): 255-264. DOI: 10.1111/cea.12406.

[55] SMIESZEK S P, WELSH S, XIAO C, et al. Correlation of age-of-onset of Atopic Dermatitis with Filaggrin loss-of-function variant status[J]. Sci Rep, 2020, 10(1): 2721. DOI: 10.1038/s41598-020-59627-7.

[56] TSAKOK T, MARRS T, MOHSIN M, et al. Does atopic dermatitis cause food allergy: a systematic review[J]. J Allergy Clin Immunol, 2016, 137(4): 1071-1078. DOI: 10.1016/j.jaci.2015.10.049.

[57] FURUE M, YAMAMURA K, KIDO-NAKAHARA M, et al. Emerging role of interleukin-31 and interleukin-31 receptor in pruritus in atopic dermatitis[J]. Allergy, 2018, 73(1): 29-36.

DOI: 10.1111/all.13239.

[58] RUZICKA T, HANIFIN J M, FURUE M, et al. Anti-interleukin-31 receptor A antibody for atopic dermatitis[J]. N Engl J Med, 2017, 376(9): 826-835. DOI: 10.1056/NEJMoa1606490.

[59] NOCCHI L, ROY N, D’ATTILIA M, et al. Interleukin-31-mediated photoablation of pruritogenic epidermal neurons reduces itch-associated behaviours in mice[J]. Nat Biomed Eng, 2019,

3(2): 114-125. DOI: 10.1038/s41551-018-0328-5.

[60] National Academies of Sciences, Engineering, and Medicine, Health and Medicine Division, Food and Nutrition Board, et al. Finding a path to safety in food allergy: assessment of the global burden, causes, prevention, management, and public policy[M]. Washington (DC): National Academies Press, 2016. DOI: 10.17226/23658.

[61] KOPP M V, MUCHE-BOROWSKI C, ABOU-DAKN M, et al. S3 guideline allergy prevention[J]. Allergol Select, 2022, 6: 61-97. DOI: 10.5414/ALX02303E.

[62] HALKEN S, MURARO A, DE SILVA D, et al. EAACI guideline: preventing the development of food allergy in infants and young children (2020 update)[J]. Pediatr Allergy Immunol, 2021, 32(5): 843-858. DOI: 10.1111/pai.13496.

[63] FILIPIAK-PITTROFF B, KOLETZKO S, KRÄMER U, et al. Full breastfeeding and allergies from infancy until adolescence in the GINIplus cohort [J]. Pediatr Allergy Immunol, 2018,

29(1): 96-101. DOI: 10.1111/pai.12798.

[64] TOIT G D, ROBERTS G, SAYRE P H, et al. Randomized trial of peanut consumption in infants at risk for peanut allergy[J].

N Engl J Med, 2015, 372(9): 803-813. DOI: 10.1056/NEJMoa1414850.

[65] World Health Organization. Ambient (outdoor) air quality and health[EB/OL].(2024-09-13)[2024-09-28]. http: //www.who.int/mediacentre/factsheets/fs313/en/.

[66] KIM H O, KIM J H, CHO S I, et al. Improvement of atopic dermatitis severity after reducing indoor air pollutants[J]. Ann Dermatol, 2013, 25(3): 292-297. DOI: 10.5021/ad.2013.25.3.292.

[67] HORIMUKAI K, MORITA K, NARITA M, et al. Application of moisturizer to neonates prevents development of atopic

dermatitis[J]. J Allergy Clin Immunol, 2014, 134(4): 824-830.e6. DOI: 10.1016/j.jaci.2014.07.060.

[68] SIMPSON E L, CHALMERS J R, HANIFIN J M, et al. Emollient enhancement of the skin barrier from birth offers effective atopic dermatitis prevention[J]. J Allergy Clin Immunol, 2014, 134(4): 818-823. DOI: 10.1016/j.jaci.

2014.08.005.

[69] 杨帆, 李冬冬, 王小勤, 等. 儿童特应性皮炎居家皮肤护理方式与疾病严重程度的关系[J]. 医学新知, 2024, 34(5): 497-507. DOI:10.12173/j.issn.1004-5511.202401001.

YANG F, LI D D, WANG X Q, et al. Analysis of the relationship between home skin care associated factors and disease severity for children with atopic dermatitis[J]. Yixue Xinzhi Zazhi, 2024, 34(5): 497-507. DOI:10.12173/j.issn.1004-5511.202401001.

[70] SKJERVEN H O, REHBINDER E M, VETTUKATTIL R, et al. Skin emollient and early complementary feeding to prevent infant atopic dermatitis (PreventADALL): a factorial, multicentre, cluster-randomised trial[J]. Lancet, 2020, 395(10228): 951-961. DOI: 10.1016/S0140-6736(19)32983-6.

[71] CHALMERS J R, HAINES R H, BRADSHAW L E, et al. Daily emollient during infancy for prevention of eczema: the BEEP randomised controlled trial[J]. Lancet, 2020, 395(10228): 962-972. DOI: 10.1016/S0140-6736(19)32984-8.

[72] KELLEHER M M, CRO S, CORNELIUS V, et al. Skin care interventions in infants for preventing eczema and food allergy[J]. Cochrane Database Syst Rev, 2021, 2(2): CD013534. DOI: 10.1002/14651858.CD013534.pub2.

[73] SINDHER S, ALKOTOB S S, SHOJINAGA M N, et al. Pilot study measuring transepidermal water loss (TEWL) in children suggests trilipid cream is more effective than a paraffin-based emollient[J]. Allergy, 2020, 75(10): 2662-2664. DOI: 10.1111/all.14275.

[74] SCHUT C, MOLLANAZAR N K, KUPFER J, et al. Psychological interventions in the treatment of chronic itch[J].

Acta Derm Venereol, 2016, 96(2): 157-161. DOI: 10.2340/00015555-2177.

[75] SEARS A V, ALI R, O’CONNOR J, et al. Establishing and developing a paediatric psychodermatology service and our experience of a new paediatric psychodermatology clinic during the Covid 19 pandemic[J]. Skin Health Dis, 2022, 2(4): e151. DOI: 10.1002/ski2.151.

(责任编辑:林燕薇)