APP下载

影像学方法在鼻咽癌颈淋巴结转移诊断中的应用进展

2024-11-01刘懿炜王钢周子博朱桐尧赵海娜凌文武

分子影像学杂志 2024年7期
关键词:淋巴结转移鼻咽癌人工智能

摘要:鼻咽癌是一种恶性度较高的癌症,早期颈部淋巴结转移为其典型特征之一,显著影响患者预后。应用影像学方法进行颈部淋巴结检查可尽早筛查出鼻咽癌。本文简要概述了鼻咽癌颈部淋巴结转移的主要影像学特征,探讨了MRI、CT、超声等常用影像学诊断方法和PET、荧光成像等新技术在鼻咽癌颈淋巴结转移诊断中的研究进展,以及人工智能辅助影像诊断转移性颈部淋巴结的最新应用。随着人工智能等新技术的不断发展,影像学方法在鼻咽癌颈部淋巴结转移诊断中的应用将更加精准,可为疾病的早期发现、精准治疗及预后评估提供有力支持。

关键词:鼻咽癌;淋巴结转移;影像学检查;人工智能

Advances in the application of medical imaging methods in the diagnosis of cervical lymph node metastasis in nasopharyngeal carcinoma

LIU Yiwei1, 2, WANG Gang2, ZHOU Zibo3, ZHU Tongyao4, ZHAO Haina1, LING Wenwu1

1Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, China; 2West China School of Medicine of Sichuan University, Chengdu 610041, China; 3College of Computer Science of Sichuan University, Chengdu 610041, China; 4Pittsburgh Institute of Sichuan University, Chengdu 610041, China

Abstract: Nasopharyngeal carcinoma is a type of cancer with high malignancy, and early cervical lymph node metastasis is one of its typical characteristics, which significantly affects the prognosis of patients. Imaging methods can be used for cervical lymph node examination to screen nasopharyngeal carcinoma as early as possible. This article briefly summarizes the imaging features of cervical lymph node metastasis in nasopharyngeal carcinoma, deeply discusses the research progress of commonly used imaging diagnostic methods such as MRI, CT, ultrasound, as well as new technologies such as PET and fluorescence imaging in the examination of cervical lymph node, and the latest application of AI-assisted imaging in the diagnosis of metastatic cervical lymph node. With the continuous development of new technologies such as AI, the application of imaging methods in the diagnosis of cervical lymph node metastasis in nasopharyngeal carcinoma will be more precise, providing strong support for early detection, precise treatment, and prognosis evaluation of the disease.

Keywords: nasopharyngeal carcinoma; lymph node metastasis; imaging examination; artificial intelligence

鼻咽癌是一种起源于鼻咽黏膜内层的上皮癌,在东亚和东南亚的发病率较高,其诱因包括EB病毒感染、宿主遗传和环境因素等[1]。鼻咽癌可以侵入附近组织,甚至通过血液或淋巴系统转移到全身多处器官。鼻咽癌具有较高的颈部淋巴结转移倾向,双侧颈部淋巴结转移通常发生在疾病早期,且患者生存率与转移淋巴结数目呈负相关[2-4]。因此,尽早筛查出鼻咽癌颈部淋巴结转移有助于临床选择合适的治疗方式,对提高患者生存率具有重要意义。目前,临床上主要使用影像学方法进行颈部淋巴结检查,因此本综述旨在探讨鼻咽癌颈部淋巴结转移的影像学特征及相关研究进展,以期为鼻咽癌的早期诊疗、分期和预后等提供参考。

1" 鼻咽癌颈部淋巴结转移特征

淋巴结是人体重要的免疫器官,颈淋巴结浸润程度是鼻咽癌的主要预后因素[5]。以往研究表明,鼻咽癌具有很高的淋巴结转移率(可达94.5%),转移多沿颈部有序扩散,很少发生跳跃转移[4, 6, 7]。颈部淋巴结的水平分类有助于鼻咽癌的定性诊断和分级分期,对于患者的生存和局部复发及远处转移的检测具有重要价值[8]。根据2017年国际抗癌联盟和美国癌症联合委员会公布的第八版TNM分期系统,随着淋巴结受累程度和范围的增加,可依次用N1~N3来表示鼻咽癌颈部淋巴结转移的不同阶段。

针对第八版TNM分期系统,有学者指出其局限性并提出了相应的建议。如有研究证实单侧咽后淋巴结转移的鼻咽癌患者比双侧咽后淋巴结转移患者具有更高的生存率,建议将后者从N1升级为N2[9]。有研究表明,鼻咽癌患者颈部V区后区淋巴结转移预后差,远处转移风险高,提示该区可能是鼻咽癌的一个新的颈部淋巴结节段[10]。有学者认为,将多发性颈部淋巴结坏死患者分类为N3可以改善当前TNM分期系统的预后[11]。也有研究证明,鼻咽癌转移淋巴结的数量是患者生存的主要独立预后因素,应纳入N分期系统以提高预测准确性[12]。以上研究对于TNM分期系统的完善、鼻咽癌的分期及预后具有重要的参考价值。因此,准确评估鼻咽癌患者颈部淋巴结是否存在转移,对鼻咽癌的诊疗具有重要临床意义。

2" 影像学检查在鼻咽癌颈淋巴结转移中的应用价值

细针穿刺活检是鉴别鼻咽癌患者颈部淋巴结转移的金标准。然而,由于获得有效细胞量不一,部分患者诊断困难[13]。影像学检查包括MRI、CT、PET、超声等,对于头颈部肿瘤患者颈淋巴结转移具有良好的诊断性能,在转移性淋巴结的诊断中发挥重要作用[14, 15]。

MRI对软组织分辨率较高,是检查淋巴结的常用手段[16]。有学者认为,MRI可精确显示早期原发性肿瘤,并且更易发现深部原发性肿瘤浸润,建议应优先使用MRI进行鼻咽癌分期[17]。有学者认为,MRI确定的转移淋巴结最大轴向直径大于4 cm是鼻咽癌独立阴性预后因素,建议将此参数作为TNM分期系统中N3分类的亚群[18]。此外,有研究结合合成MRI参数、扩散加权成像参数与淋巴结形态学特征,显著提高了鼻咽癌良恶性淋巴结诊断效率[19]。也有学者基于PET/MR进行鼻咽癌相关研究。如有研究证实同步全身18F-FDG PET/MR对转移性淋巴结的评估有着更高的敏感度,可用于鼻咽癌患者分期[20]。

除淋巴结的大小、位置、偏侧性等参数,由MRI确定的其他淋巴结状态包括分组、坏死、包膜外扩散和融合等。有研究将淋巴结分组纳入预后生存列线图模型,发现淋巴结分组是MRI检测到的区域淋巴结预测总体生存率的重要预后因素[21]。有学者开发了基于MRI的列线图,发现颈部淋巴结坏死可有效预测鼻咽癌患者的生存风险[22]。影像学淋巴结外扩散(rENE),即淋巴结包膜外扩散的影像学表现。有研究依据浸润程度将rENE分为4级,并发现第3级rENE是影响鼻咽癌患者5年生存期的独立不良指标[23]。有学者使用簇状淋巴结的MRI图像构建了列线图,发现簇状淋巴结是鼻咽癌患者无远处转移生存期的独立预后因素,有助于评估患者远处转移风险[24]。有学者对转移性淋巴结的MRI特征作出以下解释:淋巴结外肿瘤组织浸润淋巴结周围脂肪组织,或淋巴结周围结缔组织增生,导致其边界模糊;肿瘤浸润和淋巴结内软化或坏死,导致T2加权图像上的信号强度不规则,而对比增强的T1加权图像上的信号强度不均匀。依据以上形态学特征,可有助于MRI对头颈部肿瘤患者淋巴结转移的检测[25]。上述研究均表明,MRI确定的转移性颈淋巴结特征可显著影响鼻咽癌患者的预后,具有重要的临床意义。

CT是检查颈淋巴结的良好手段,研究已证实了其在甲状腺癌[26]、口腔癌[27]等癌症的颈淋巴结转移诊断中有较好的应用价值。相比于CT,PET/CT结合组织代谢功能与解剖形态,可更准确地识别转移性淋巴结[28]。以往研究表明,PET/CT较MRI可更精准地诊断鼻咽癌颈部淋巴结转移,有利于鼻咽癌分期[29, 30]。有研究表明,PET/CT比MRI和超声能更准确地检测鼻咽癌患者的复发淋巴结[31]。而也有学者认为,相较于具有高空间分辨率的超声、CT和MRI,PET/CT的敏感度和阴性预测值最高,但也具有最低的特异度和准确度以及最高的假阳性率[32]。多项研究表明,联合使用MRI和PET/CT可以清楚显示鼻咽癌的淋巴结扩散模式,对鼻咽癌重新分期的准确性优于单独使用其中一种手段[30, 33-34]。

临床上常用18F-FDG等作为PET显像剂,由于采用的显像剂不同,相关研究的结论存在差异。如有学者比较了镓-68标记的成溴细胞活化蛋白抑制剂(68Ga-FAPI)和18F-FDG头颈部PET/MR对鼻咽癌患者的诊断效果,发现18F-FDG能检测出更多的阳性淋巴结[35]。在一项病例报告中,1例鼻咽癌患者被18F-FDG PET/CT误诊为双侧颈淋巴结转移,而在非转移性淋巴结中没有观察到异常的68Ga-FAPI摄取,该研究据此推测68Ga-FAPI PET/CT可能比18F-FDG PET/CT更好地评估鼻咽癌患者治疗前的淋巴结状态[36]。上述研究提示,在鼻咽癌颈部淋巴结转移检查中采用不同的成像方法,可能会产生不同的诊断结果。

相较于CT和MRI,超声检查无辐射、价格低廉、操作便捷,对较小的或早期转移性淋巴结具有更高的分辨率[37]。目前,临床上常用的超声检查包括B超、彩色多普勒成像等常规手段,以及弹性超声和超声造影等新技术。B超依据淋巴结大小鉴别良恶性淋巴结,无法排除恶性浸润,因此在淋巴结诊断方面受限;彩色多普勒成像可显示大血管结构,提升良恶性淋巴结鉴别的准确率,但微血管结构显示不佳[38]。因此,超声检查新技术在良恶性淋巴结诊断中发挥重要作用。

超声弹性成像对组织硬度敏感,并被证实在鼻咽癌颈淋巴结转移的诊断中具有优势。例如有学者采用剪切波弹性成像并获得了较高的敏感度、特异度和准确度,证明其可以作为鼻咽癌颈淋巴结常规检查的辅助成像方式[39]。研究发现,鼻咽癌良恶性淋巴结的最大和平均弹性指数存在具有统计学意义的差异,剪切波弹性成像有助于鼻咽癌N分期和生存预后[40]。

超声造影通过使用微泡造影剂提供组织灌注信息,实现血液供应的实时可视化,可更好地显示淋巴结微血管状况,具有更高的诊断准确性[37, 41, 42]。已有研究证明,相较于颈部良性淋巴结,鼻咽癌颈部淋巴结转移在超声造影图像上呈现具有统计学意义的特征,包括向心灌注、不均匀强化、明显的高强化和出现无灌注区[13]。然而,超声造影具有很高的时空复杂性,这使其定量评估有一定难度[43]。

荧光成像是一种新颖的分子影像学技术,已广泛应用于多种癌症的淋巴结转移检查中。例如,有研究制备了对淋巴结微转移有更高的分辨率的近红外荧光探针,成功将其应用于乳腺癌转移性淋巴结的术前评估和术中导航[44]。有研究采用吲哚菁绿荧光导航腹腔镜检测盆腔淋巴结,可有效治疗晚期直肠癌[45]。在鼻咽癌淋巴结转移诊断中,有研究使用吲哚菁绿进行术中实时荧光成像并成功定位复发性鼻咽癌前哨淋巴结,有助于患者的淋巴结分期[46]。目前有关荧光成像在鼻咽癌转移性淋巴结中的应用报道较少。这为未来的研究提供了思路,荧光成像可能在鼻咽癌转移性淋巴结的检查与诊断中有着广阔的应用前景。

综上,影像学检查在鼻咽癌颈部淋巴结转移诊断中具有显著的优势,但也存在一定的局限性。以超声检查为例,其诊断表现受医师经验、患者合作性、淋巴结大小和位置的影响较大[47]。由于诊断过程存在一定主观性,不同医生的诊断结果也不可避免地存在分歧[42]。而近年来AI技术的发展,或将有助于更精准的鼻咽癌颈部淋巴结转移影像学诊断。

3" AI模型在转移性淋巴结影像诊断中的应用

AI已广泛应用于影像辅助诊断,其技术手段包括机器学习(ML)和深度学习(DL)等。ML常用的算法类型有支持向量机和随机森林等,卷积神经网络则是最重要的DL算法,可高效地进行图像分类[48, 49]。ML方法依赖专家从感兴趣区提取图像特征并输入ML分类器中,而DL算法可以从数据中自动学习特征表示,减少了对手动预处理步骤的需求[50]。

目前,临床上已经使用AI技术进行医学图像识别,用于辅助多种癌症的淋巴结转移诊断。例如,有研究依据原发性乳腺癌患者的腋窝淋巴结超声图像构建的DL模型,能有效预测淋巴结转移风险[51]。有学者利用ML技术开发了一种基于术前MRI的影像组学评估方法,可有效识别早期浸润性乳腺癌腋窝淋巴结转移[52]。有研究开发了一种术前自动AI算法,用于肿瘤和淋巴结的CT图像分割,可预测胰腺导管腺癌患者的淋巴结转移[53]。AI技术在影像学领域的应用,一定程度地提高了诊断效率,有着极大的应用价值。

近年来,有学者提出了用于鼻咽癌颈淋巴结转移影像诊断的AI方法。有研究通过淋巴结MRI图像特征构建列线图,可以很好地预测鼻咽癌患者的远处转移风险,有助于指导临床决策和鼻咽癌患者的治疗后监测[54]。有学者构建了一种基于MRI的全自动图像分割模型,可有效地对鼻咽癌原发性病灶和转移性淋巴结图像进行联合分割并辅助鼻咽癌分期,有利于预后预测和有针对性的放疗计划[55]。有研究利用治疗前MRI技术开发卷积神经网络,用于分析鼻咽癌患者的颈部转移性淋巴结,并很好地预测了患者的远处转移[56]。使用AI模型辅助鼻咽癌转移性颈部淋巴结的诊断,可以减轻影像科医师的负担,并有效地进行鼻咽癌诊断、分期和预测。然而,现有的研究主要集中在使用AI模型辅助鼻咽癌原发性肿瘤的影像诊断[57],有关鼻咽癌转移性淋巴结的文献报道较少。基于上述研究成果,可以预见,AI技术在辅助鼻咽癌转移性淋巴结诊断中有着巨大的潜力。

4" 总结与展望

鼻咽癌是一种恶性度较高的癌症,颈部淋巴结转移状态是其重要的预后因素。多种影像学检查手段和AI技术的辅助应用在鼻咽癌颈部淋巴结转移的诊断中均发挥了重要的作用,可以从颈部淋巴结的大小、分布及形态用于辅助淋巴结转移的诊断,以提高临床对肿瘤进行分期及预后的判断的准确性,是治疗后随访的最重要方法。但现有的影像学检查技术及AI研究仍存在局限性:影像学检查对转移性淋巴结判断的精准度仍有待于提高;大多数AI研究缺乏多中心的验证,所构建模型的精准度依赖于病灶的精准勾画等,难以应用推广。随着分子影像学及AI技术的快速发展,有望进一步提高鼻咽癌颈部淋巴结转移诊断的准确性,为其诊疗提供更多有价值的信息特征。

参考文献:

[1]" "Chen YP, Chan ATC, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80.

[2] Lin M, Zhang XL, You R, et al. Evolutionary route of nasopharyngeal carcinoma metastasis and its clinical significance[J]. Nat Commun, 2023, 14(1): 610.

[3]" "Yeung DCM, Yeung Z, Wong EWY, et al. Neck lymph node status on survival of regionally recurrent or persistent nasopharyngeal carcinoma[J]. Sci Rep, 2020, 10(1): 5622.

[4]" "Ho FCH, Tham IWK, Earnest A, et al. Patterns of regional lymph node metastasis of nasopharyngeal carcinoma: a meta-analysis of clinical evidence[J]. BMC Cancer, 2012, 12: 98.

[5]" Sham JS, Choy D, Wei WI. Nasopharyngeal carcinoma: orderly neck node spread[J]. Int J Radiat Oncol Biol Phys, 1990, 19(4): 929-33.

[6]" "Liu LZ, Zhang GY, Xie CM, et al. Magnetic resonance imaging of retropharyngeal lymph node metastasis in nasopharyngeal carcinoma: patterns of spread[J]. Int J Radiat Oncol Biol Phys, 2006, 66(3): 721-30.

[7]" "Wang L, Wu Z, He Q, et al. Distribution of regional lymph nodes metastasis in 870 cases of nasopharyngeal carcinoma and the suggestions for individualized elective prophylactic neck irradiation with intensity-modulated radiotherapy[J]. Cancer Med, 2024, 13(3): e6723.

[8]" "Liu YT, Zhao JJ, Luo QY, et al. Automated classification of cervical lymph‑node‑level from ultrasound using Depthwise Separable Convolutional Swin Transformer[J]. Comput Biol Med, 2022, 148: 105821.

[9]" "Huang L, Zhang Y, Liu YF, et al. Prognostic value of retropharyngeal lymph node metastasis laterality in nasopharyngeal carcinoma and a proposed modification to the UICC/AJCC N staging system[J]. Radiother Oncol, 2019, 140: 90-7.

[10] Jiang CY, Gao H, Zhang L, et al. Distribution pattern and prognosis of metastatic lymph nodes in cervical posterior to level V in nasopharyngeal carcinoma patients[J]. BMC Cancer, 2020, 20(1): 667.

[11] Li J, Zhao Q, Zhang Y, et al. Prognostic value of quantitative cervical nodal necrosis burden on MRI in nasopharyngeal carcinoma and its role as a stratification marker for induction chemotherapy[J]. Eur Radiol, 2022, 32(11): 7710-21.

[12] Ma HL, Liang SB, Cui CY, et al. Prognostic significance of quantitative metastatic lymph node burden on magnetic resonance imaging in nasopharyngeal carcinoma: a retrospective study of 1224 patients from two centers[J]. Radiother Oncol, 2020, 151: 40-6.

[13] Ling WW, Nie J, Zhang DY, et al. Role of contrast-enhanced ultrasound (CEUS) in the diagnosis of cervical lymph node metastasis in nasopharyngeal carcinoma (NPC) patients[J]. Front Oncol, 2020, 10: 972.

[14] Abdel Khalek Abdel Razek A, King A. MRI and CT of nasopharyngeal carcinoma[J]. AJR Am J Roentgenol, 2012, 198(1): 11-8.

[15]" Liao LJ, Lo WC, Hsu WL, et al. Detection of cervical lymph node metastasis in head and neck cancer patients with clinically N0 neck-a meta-analysis comparing different imaging modalities[J]. BMC Cancer, 2012, 12: 236.

[16]" Amin MB, Greene FL, Edge SB, et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population‑based to a more \"personalized\" approach to cancer staging[J]. CA Cancer J Clin, 2017, 67(2): 93-9.

[17]" Liao XB, Mao YP, Liu LZ, et al. How does magnetic resonance imaging influence staging according to AJCC staging system for nasopharyngeal carcinoma compared with computed tomography?[J]. Int J Radiat Oncol Biol Phys, 2008, 72(5): 1368-77.

[18] Huang CL, Chen Y, Guo R, et al. Prognostic value of MRI-determined cervical lymph node size in nasopharyngeal carcinoma[J]. Cancer Med, 2020, 9(19): 7100-6.

[19]" Wang P, Hu SD, Wang XY, et al. Synthetic MRI in differentiating benign from metastatic retropharyngeal lymph node: combination with diffusion-weighted imaging[J]. Eur Radiol, 2023, 33(1): 152-61.

[20] Chan SC, Yeh CH, Yen TC, et al. Clinical utility of simultaneous whole-body 18F-FDG PET/MRI as a single-step imaging modality in the staging of primary nasopharyngeal carcinoma[J]. Eur J Nucl Med Mol Imag, 2018, 45(8): 1297-308.

[21] Wan YZ, Tian L, Zhang GY, et al. The value of detailed MR imaging report of primary tumor and lymph nodes on prognostic nomograms for nasopharyngeal carcinoma after intensity-modulated radiotherapy[J]. Radiother Oncol, 2019, 131: 35-44.

[22] Liu KY, Lin ST, Ke LR, et al. Prognostic value and the potential role of treatment options for cervical lymph node necrosis in nasopharyngeal carcinoma[J]. Oral Oncol, 2020, 109: 104864.

[23] Mao YP, Wang SX, Lydiatt W, et al. Unambiguous advanced radiologic extranodal extension determined by MRI predicts worse outcomes in nasopharyngeal carcinoma: potential improvement for future editions of N category systems[J]. Radiother Oncol, 2021, 157: 114-21.

[24]" Ma HL, Qiu YY, Li HJ, et al. Prognostic value of nodal matting on MRI in nasopharyngeal carcinoma patients[J]. J Magn Reson Imaging, 2021, 53(1): 152-64.

[25]" de Bondt RBJ, Nelemans PJ, Bakers F, et al. Morphological MRI criteria improve the detection of lymph node metastases in head and neck squamous cell carcinoma: multivariate logistic regression analysis of MRI features of cervical lymph nodes[J]. Eur Radiol, 2009, 19(3): 626-33.

[26] Lee DH, Kim YK, Yu HW, et al. Computed tomography for detecting cervical lymph node metastasis in patients who have papillary thyroid microcarcinoma with tumor characteristics appropriate for active surveillance[J]. Thyroid, 2019, 29(11): 1653-9.

[27]" Luo YH, Mei XL, Liu QR, et al. Diagnosing cervical lymph node metastasis in oral squamous cell carcinoma based on third-generation dual-source, dual-energy computed tomography[J]. Eur Radiol, 2023, 33(1): 162-71.

[28]" Lai V, Khong PL. Updates on MR imaging and 18F-FDG PET/CT imaging in nasopharyngeal carcinoma[J]. Oral Oncol, 2014, 50(6): 539-48.

[29]Ng SH, Chan SC, Yen TC, et al. Staging of untreated nasopharyngeal carcinoma with PET/CT: comparison with conventional imaging work-up[J]. Eur J Nucl Med Mol Imaging, 2009, 36(1): 12-22.

[30]" Yang SS, Wu YS, Chen WC, et al. Benefit of [18F]-FDG PET/CT for treatment-naïve nasopharyngeal carcinoma[J]. Eur J Nucl Med Mol Imaging, 2022, 49(3): 980-91.

[31]" OuYang PY, Liu ZQ, Lin QG, et al. Benefit of[18F]FDG PET/CT in the diagnosis and salvage treatment of recurrent nasopharyngeal carcinoma[J]. Eur J Nucl Med Mol Imaging, 2023, 50(3): 881-91.

[32] Takamura M, Nikkuni Y, Hayashi T, et al. Comparing the diagnostic accuracy of ultrasonography, CT, MRI, and PET/CT in cervical lymph node metastasis of oral squamous cell carcinoma[J]. Biomedicines, 2023, 11(12): 3119.

[33] Comoretto M, Balestreri L, Borsatti E, et al. Detection and restaging of residual and/or recurrent nasopharyngeal carcinoma after chemotherapy and radiation therapy: comparison of MR imaging and FDG PET/CT[J]. Radiology, 2008, 249(1): 203-11.

[34]Ng SH, Chang JTC, Chan SC, et al. Nodal metastases of nasopharyngeal carcinoma: patterns of disease on MRI and FDG PET[J]. Eur J Nucl Med Mol Imaging, 2004, 31(8): 1073-80.

[35]" Qin CX, Liu F, Huang J, et al. A head-to-head comparison of 68Ga-DOTA‑FAPI‑04 and 18F‑FDG PET/MR in patients with nasopharyngeal carcinoma: a prospective study[J]. Eur J Nucl Med Mol Imaging, 2021, 48(10): 3228-37.

[36]Shang QH, Zhao L, Pang YZ, et al. 68Ga‑FAPI PET/CT distinguishes the reactive lymph nodes from tumor metastatic lymph nodes in a patient with nasopharyngeal carcinoma[J]. Clin Nucl Med, 2022, 47(4): 367-8.

[37]" Ding SW, Xiong P, Zuo JX. Value of contrast-enhanced ultrasound in predicting early lymph-node metastasis in oral cancer[J]." Dentomaxillofac Radiol, 2022, 51(3): 20210293.

[38] Cui XW, Hocke M, Jenssen C, et al. Conventional ultrasound for lymph node evaluation, update 2013[J]. Z Gastroenterol, 2014, 52(2): 212-21.

[39] Chen BB, Li J, Guan Y, et al. The value of shear wave elastography in predicting for undiagnosed small cervical lymph node metastasis in nasopharyngeal carcinoma: a preliminary study[J]. Eur J Radiol, 2018, 103: 19-24.

[40]" Guan Y, Liu S, Li AC, et al. A pilot study: N-staging assessment of shear wave elastrography in small cervical lymph nodes for nasopharyngeal carcinoma[J]. Front Oncol, 2020, 10: 520.

[41] Wilson SR, Burns PN. Microbubble contrast for radiological imaging: 2. Applications[J]. Ultrasound Q, 2006, 22(1): 15-8.

[42] Nie J, Ling WW, Yang QR, et al. The value of CEUS in distinguishing cancerous lymph nodes from the primary lymphoma of the head and neck[J]. Front Oncol, 2020, 10: 473.

[43] Zhang YF, Wei QY, Huang YN, et al. Deep learning of liver contrast‑enhanced ultrasound to predict microvascular invasion and prognosis in hepatocellular carcinoma[J]. Front Oncol, 2022, 12: 878061.

[44]" Zhao D, Xu MH, Yang SY, et al. Specific diagnosis of lymph node micrometastasis in breast cancer by targeting activatable near-infrared fluorescence imaging[J]. Biomaterials, 2022, 282: 121388.

[45] Su H, Xu Z, Bao M, et al. Lateral pelvic sentinel lymph node biopsy using indocyanine green fluorescence navigation: can it be a powerful supplement tool for predicting the status of lateral pelvic lymph nodes in advanced lower rectal cancer[J]. Surg Endosc, 2023, 37(5): 4088-96.

[46] Chan JYW, Tsang RKY, Wong STS, et al. Indocyanine green fluorescence mapping of sentinel lymph node in patients with recurrent nasopharyngeal carcinoma after previous radiotherapy[J]. Head Neck, 2015, 37(12): E169-73.

[47]" Ryu SW, Bok GH, Jang JY, et al. Clinically useful diagnostic tool of contrast enhanced ultrasonography for focal liver masses: comparison to computed tomography and magnetic resonance imaging[J]. Gut Liver, 2014, 8(3): 292-7.

[48]" Mitsala A, Tsalikidis C, Pitiakoudis M, et al. Artificial intelligence in colorectal cancer screening, diagnosis and treatment. A new era[J]. Curr Oncol, 2021, 28(3): 1581-607.

[49]Barragán‑Montero A, Javaid U, Valdés G, et al. Artificial intelligence and machine learning for medical imaging: a technology review[J]. Phys Med, 2021, 83: 242-56.

[50]" Hosny A, Parmar C, Quackenbush J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-10.

[51] Zhou LQ, Wu XL, Huang SY, et al. Lymph node metastasis prediction from primary breast cancer US images using deep learning[J]. Radiology, 2020, 294(1): 19-28.

[52] Yu YF, He ZF, Ouyang J, et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: a machine learning, multicenter study[J]. EBio Med, 2021, 69: 103460.

[53]" Bian Y, Zheng ZL, Fang X, et al. Artificial intelligence to predict lymph node metastasis at CT in pancreatic ductal adenocarcinoma[J]. Radiology, 2023, 306(1): 160-9.

[54]" Xie CB, Li HJ, Yan Y, et al. A nomogram for predicting distant metastasis using nodal‑related features among patients with nasopharyngeal carcinoma[J]. Front Oncol, 2020, 10: 616.

[55]" Li Y, Dan TT, Li HJ, et al. NPCNet: jointly segment primary nasopharyngeal carcinoma tumors and metastatic lymph nodes in MR images[J]. IEEE Trans Med Imaging, 2022, 41(7): 1639-50.

[56]" Hua HL, Deng YQ, Li S, et al. Deep learning for predicting distant metastasis in patients with nasopharyngeal carcinoma based on pre-radiotherapy magnetic resonance imaging[J]. Comb Chem High Throughput Screen, 2023, 26(7): 1351-63.

[57]" Wang ZP, Fang MJ, Zhang J, et al. Radiomics and deep learning in nasopharyngeal carcinoma: a review[J]. IEEE Rev Biomed Eng, 2024, 17: 118-35.

(编辑:郎" 朗)

猜你喜欢

淋巴结转移鼻咽癌人工智能
中医药治疗鼻咽癌研究进展
2019:人工智能
人工智能与就业
数读人工智能
肺腺癌纵隔淋巴结转移影像学规律及转移影响因素分析
T1期外周型肺癌临床病理特征及淋巴结转移分析
常规超声联合CT对甲状腺乳头状癌颈淋巴结转移的诊断价值
下一幕,人工智能!
颈部中央区域淋巴结清扫术在甲状腺微小乳头状癌中的应用
鼻咽癌组织Raf-1的表达与鼻咽癌放疗敏感性的关系探讨