HER2放射性分子探针应用于肿瘤诊疗的研究进展
2024-11-01查圆郭旭高晓敏杨蕊姚荧
摘要:人表皮生长因子受体2(HER2)在多种肿瘤中异常表达或突变,促进与细胞增殖和肿瘤发生相关的多种信号通路的启动,是肿瘤诊疗的重要靶点之一。核医学利用放射性示踪技术精确定位病灶,通过PET/SPECT显像技术实现肿瘤早期诊断及治疗监测。HER2放射性分子探针,包括抗体、小分子多肽、亲合体及锚蛋白重复蛋白等类型,正处于积极研发及临床前/早期临床研究阶段,为核医学领域研究热点之一。本文基于HER2放射性分子探针种类与乳腺癌、卵巢癌、胃癌等HER2阳性肿瘤疾病分类,对核医学技术应用于HER2阳性肿瘤诊疗的研究进展作一综述。
关键词:HER2;放射性分子探针;核医学;放射性核素;乳腺癌;卵巢癌;胃癌;非小细胞肺癌
Advances in the application of HER2 radioactive molecular probes for tumour diagnosis and treatment
ZHA Yuan1, GUO Xu2, GAO Xiaomin3, YANG Rui4, YAO Ying2
1Nanjing Medical University Wuxi Medical Centre, Nanjing 211166, China; 2Department of Pharmacy, Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Wuxi 214002, China; 3School of Medicine Jiangnan University, Wuxi 214002, China; 4Institute of Eugenics and Genetic Medicine, Wuxi Maternal and Child Health Hospital, Wuxi 214002, China
Abstract: Human epidermal growth factor receptor 2 (HER2), which is abnormally expressed or mutated in a variety of tumours, promotes the initiation of a variety of signalling pathways related to cell proliferation and tumourigenesis, and is one of the most important targets for tumour diagnosis and treatment. Nuclear medicine uses radiotracer technology to precisely locate lesions and PET/SPECT imaging to achieve early diagnosis and therapeutic monitoring of tumours. HER2 radiotracer probes, including antibodies, small molecule peptides, amphiphiles, and anchoring repeat proteins, are undergoing active research and development, and are one of the hotspots of research in the field of nuclear medicine. Based on the types of HER2 radioactive molecular probes and the disease classification of HER2-positive tumours, this paper reviewed the research progress of nuclear medicine technology applied to the diagnosis and treatment of HER2-positive tumours.
Keywords: HER2; radioactive molecular probes; nuclear medicine; radionuclides; breast cancer; ovarian cancer; gastric cancer; non-small cell lung cancer
人表皮生长因子受体(HER)家族包括HER1、HER2、HER3和HER4,其位于细胞表面,可根据生长因子等外部信号激活内部信号通路。HER2以其开放构象中的二聚化结构域,虽无配体结合能力,却在HER家族中充当关键的二聚化伴侣,与其他成员协同激活磷脂酰肌醇-3激酶/蛋白激酶B(PI3K/AKT)和蛋白激酶C(PKC)等信号途径,从而调节细胞的生长与存活。HER2的过表达促进HER2-HER家族异二聚体形成,激活AKT原发性致瘤途径[1] 。由于肿瘤的生存依赖于HER2活性或表达水平的提升,因此在临床实践中,HER2已被确认为治疗肿瘤的关键靶标之一[2] 。
2022年美国新诊断的浸润性乳腺癌发病300 590例,其中大约20%的乳腺癌患者中存在HER2过表达[3] 。在胃癌患者中,HER2过表达率为9%~23%[4] 。2022年美国19 880例卵巢癌患者中20%~30%的患者存在HER2过表达[5, 6] 。在晚期非小细胞肺癌(NSCLC)中,HER2过表达的发生率为7.7%~23%,均与预后不良相关[7] 。此外,HER2在5%~15%的膀胱癌、5%~15%的宫颈癌、12%~15%的胆囊癌、8%~35%的子宫内膜癌和15%~37%的唾液腺癌中呈阳性[8] 。在HER2阳性肿瘤患者中,应用针对HER2的靶向疗法,如曲妥珠单抗(Trastuzumab)和帕妥珠单抗(Pertuzumab)药物治疗,通过延长总生存期(OS)和减少死亡率,有效提升了患者的预后[9, 10] 。目前,临床通常采用免疫组织化学(IHC)和荧光原位杂交(FISH)这两种技术来评估肿瘤细胞中蛋白质及基因的表达情况[11] 。IHC技术操作简便且成本较低但瘤内异质性、癌细胞染色不完全及结果主观解释的差异使其具有局限性[4]。FISH技术具有高度的可重复性和客观性,但实现高杂交效率和高信号强度的同时,保持低背景噪音是荧光原位杂交技术的关键挑战。相较于IHC及FISH两种有创性检验方式,放射性分子成像技术(RMI,如PET/CT、SPECT/CT)检测HER2表达具有一定的补充作用:首先,它属于非侵袭性检测,可多次重复评估不同治疗阶段HER2表达情况;其次,程序便捷,单一的全身成像即可实时显示体内所有组织病灶中HER2的状态;再者,多模式成像技术的结合有助于采取针对性治疗措施。目前,RMI技术已在肿瘤影像分析中发挥重要作用,包括疾病分布和严重程度的精确显示、疗效监测以及新药研发的作用机制和安全性评估等。RMI标记的基本策略为:选择合适半衰期放射性核素(常用核素68Ga、124I、89Zr、18F、64Cu用于PET显像,99mTc、177Lu、123I、111In用于SPECT显像);使用连接剂或螯合剂1,4,7,10-四氮杂环十二烷-1,4,7,10-四羧酸(DOTA)、1,4,7-三氮杂环壬烷-1,4,7-三乙酸(NOTA)、二乙烯三胺五乙酸(DTPA)等将其化学连接到靶向抗体、多肽、亲合体等配体上制得相应分子探针。放射性标记的单克隆抗HER2抗体是评估HER2表达的首个成像探针,随后基于HER2抗体片段Fab和(Fab')2、亲合体、小型肽、工程支架蛋白、纳米抗体和小分子化合物等小体积分子成像探针被相继开发。这些放射性标记的探针在临床前开发中具备评估HER2表达的(半)定量能力,并在初步临床试验中显示出临床应用的潜力[12]。然而,放射性分子探针的选择和优化,如放射性核素的半衰期、探针的特异度、敏感度和稳定性、安全性等仍是放射性分子探针在HER2阳性肿瘤诊疗中所面临的局限与挑战。未来的探针优化可通过改进其设计和合成方法,开发新型特异性探针或与其它治疗手段(如靶向疗法、免疫疗法等)结合以实现更有效的临床治疗效果。本文基于HER2放射性分子探针种类与HER2阳性肿瘤疾病分类,对核医学技术应用于HER2阳性肿瘤诊疗的研究进展作一综述。
1" HER2放射性分子探针的种类
1.1" 抗体类PET/SPECT分子探针
目前核素标记的单克隆抗体主要为曲妥珠单抗和帕妥珠单抗,两者均为靶向HER2的人源化单克隆抗体,临床用于治疗早期与转移性的HER2阳性乳腺癌[9]。采用64Cu、89Zr、177Lu[13]、111In[14]、124I标记这两种抗体的探针研究目前已取得一定的进展,如64Cu-trastuzumab[15]、124I-trastuzumab[16]、89Zr-pertuzumab[17]等探针。HER2抗体片段Fab分子大小相对小,有助于靶组织的显像,提高肿瘤与非靶组织的对比度[18]。在初步临床研究中,采用木瓜蛋白酶消化或酶切法等方法制备的曲妥珠单抗片段[Fab and F(ab’)2]在用放射性核素(如68Ga、89Zr、177Lu等)标记后制得的探针如68Ga trastuzumab Fab[19],89Zr∙Df-HER2-Fab-PAS200[20],177Lu-CHX-A”-DTPA-F(ab’)2-Trastuzumab[21]等在患者体内安全稳定且可特异靶向HER2阳性肿瘤细胞,具有良好应用前景。纳米抗体又称单域抗体,是一种小型抗原结合片段,其具有的稳定性好、特异性高、抗原结合亲和力强、循环时间短、肿瘤穿透深等优点使其适合开发作为HER2靶向探针制剂[22]。目前,采用18F[23]、131I[22]、89Zr[24]、99mTc[25]、177Lu[26]、225Ac[27]等放射性元素标记NM-02、2Rs15d、RAD201、MIRC208、MIRC213[28]、MIRC213-709等纳米抗体的研究正进一步推进临床HER2阳性癌症诊断治疗过程。
1.2" 小分子多肽类PET/SPECT探针
小分子肽类成像剂可加快注射到成像的时间,同时通过使用半衰期较短的放射性同位素可减少对患者的潜在剂量[29]。目前,放射性核素标记肽类HER2靶向探针在研究中经验证可用于临床诊疗多种类型癌症。研究发现使用68Ga、177Lu、99mTc、111In等放射性标记HER2靶向肽GSGKCCYSL、DTFPYLGWWNPNEYRY[29]、A9肽[30]、rL-A9肽[31]、六聚组氨酸多肽[32]、H10F多肽[33]、LTVSPWY[34]、SSSLTVPWY[35]等多肽制得的PET/SPET探针如68Ga-GSGKCCYSL[29]、[177Lu]Lu-DOTA-rL-A9[30]、99mTc-HYNIC-H10F[33]、111In-trastuzumab-NLS[36]可在动物模型中清晰地观察到HER2阳性异种移植瘤,具有作为HER2靶向探针应用于临床的潜力。
1.3" 亲合体类PET/SPECT探针
亲合体(6~7 k)类小尺寸蛋白质具有生物相容性、无毒性并能与特异性受体高亲和性结合,可作为抗体的替代品用于肿瘤靶向递送和治疗[37]。亲合体放射性探针具有分子体积小,清除速度快,成像对比度高,肿瘤穿透性好的优势。研究发现亲合体ABY-025、MZHER2:342、ZHER2:41071等与放射性元素68Ga[38]、18F[39]、99mTc[40]等标记后制得的探针如68Ga-NOTA-MAL-MZHER2[41]、[18F] AlF-RESCA-HER2-BCH[39]、[68Ga] Ga-ABY-025[42]、68Ga-NOTA-MAL-Cys-MZHER2:342[38]、99mTc-ZHER2:41071[43]在鉴别HER2过表达型乳腺癌中具有较高的诊断准确性,且不受既往抗HER2治疗方案的影响,可作为临床可行的HER2检测方法。
1.4" 设计锚蛋白重复蛋白类PET/SPECT探针
设计的锚定蛋白重复蛋白是一种小型工程支架蛋白,其体积小、亲和力强、外渗性穿透性好且在肿瘤中蓄积性和保留性高,因此能在注射后数小时内提供高成像对比度,适用于肿瘤靶向放射性核素递送[44]。目前常用的设计的锚定蛋白重复蛋白主要为ADAPTs(白蛋白结合肽来源的亲和蛋白)和DARPin G3(相对分子质量14 k的支架蛋白)[45]。目前,利用放射性核素89Zr[46]、99mTc[47]和125I[11]标记ADAPTs、DARPin G3制得的靶向HER2受体分子探针如89Zr-DFO-G3-DARPin[46]、[99mTc]Tc-(HE)3-G3、[99mTc]Tc-ADAPT[49]、[125I]I-(HE)3-G3[50]、[99mTc]Tc-G3-G3C[51]等具有特异性靶向HER2阳性细胞应用于临床的潜力。
1.5" 外泌体与纳米颗粒PET/SPECT探针
外泌体具有独特的特性,包括无毒性、无免疫原性、生物降解性和靶向能力,使其成为临床应用的合适候选者。采用99mTc和111In标记的外泌体探针99mTc-exosomes[52]和 [111In]In-oxine-T-exos[53]主动靶向实现肿瘤部位的可视化,有潜力用作检测HER2表达的有效成像工具。Wen[54]等构建了一种新型的有机多巴胺-黑色素纳米颗粒(dMNs)作为载体并在其表面负载曲妥珠单抗,经同位素64Cu、124I标记后成功制备的多功能纳米探针64Cu-PEG-dMNPs和124I-PEG-dMNPs可用于定量检测小鼠体内HER2的表达。此外,有学者开发出一种与放射性标记的抗HER2单克隆抗体共轭的金纳米棒探针111In-Tra2-AuNRs,其可作为针对 HER2 阳性肿瘤的SPECT/光声双成像探针[55]。
2" HER2放射性分子探针在肿瘤诊疗中的应用
2.1" HER2放射性分子探针在乳腺癌中的应用
在乳腺癌中HER2阳性型占15%~20%,靶向药物的开发应用显著改善HER2阳性患者预后,使部分患者通过降级化疗策略获得最佳疗效[56]。研究发现,64Cu-NOTA-trastuzumab PET探针具有高HER2特异性、良好的血清稳定性及安全性[57]。临床试验显示其在HER2阳性乳腺癌患者中特异性摄取,肝摄取低、无不良反应。剂量较64Cu-DOTA-trastuzumab和89Zr-trastuzumab低,有助于减少患者辐射暴露,有望用于HER2阳性乳腺癌放疗剂量测定和治疗反应预测[58]。有研究对6例乳腺癌患者的89Zr-trastuzumab PET/CT图像进行定性评估,发现其检测原发肿瘤治疗反应具有中等准确性(66.7%),诊断效果与大型乳腺癌反应评估研究中描述的核磁共振成像或[18F]FDG-PET/CT 的诊断效果相当。该探针在目前的研究中,PET/CT图像的定性评估(66.7%)虽不比标准核磁共振成像(83.3%)优越,但其定量评估有可能更准确地评估 HER2 阳性乳腺癌新辅助治疗后原发肿瘤的反应[59]。采用创新的化学酶法对帕妥珠单抗进行位点特异性修饰制备的新型探针89Zr-ss-pertuzumab在6例HER2阳性转移性乳腺癌患者中的应用显示,其平均有效剂量与随机赖氨酸法标记的89Zr-DFO-pertuzumab以及89Zr-DFO-trastuzumab相当[60]。值得注意的是,与89Zr-DFO-pertuzumab相比,89Zr-ss-pertuzumab的病灶检测能力更强,示踪剂阳性率更高。该示踪剂在临床应用方面具有显著潜力,可用于实时评估HER2状态,从而指导活检过程并辅助治疗决策制定。89Zr∙Df-HER2-Fab-PAS200为氨基酸残基链(PAS)修饰合成的新型抗HER2 Fab片段探针,其在1例HER2阳性转移性乳腺癌患者的首次临床应用中具有适当的血液清除率并敏感检测小肿瘤病灶,然而由于其代谢周期较预期长,可能需要使用更短的PAS多肽或者联合注射曲妥珠单抗进一步优化[20]。有研究指出,68Ga-NOTA-MAL-MZHER2 PET/CT显像在24例HER2过表达乳腺癌患者诊断中的准确性高,不受抗HER2治疗影响,敏感度为91.7%,特异性为84.6%。其评估转移灶表现与18F-FDG相似,可作为标准HER2检测方法的补充,利于个性化临床决策[41]。此外,抗HER2单域抗体示踪剂99mTc-NM-02在10例乳腺癌患者的SPECT/CT显像研究中具有安全性、合理的辐射剂量、良好的生物分布和肿瘤靶向成像特性,可提供一种准确、无创的方法来确定乳腺癌患者的HER2状态。未来还需开展更广泛的研究以验证和比较该成像技术与病理检测在HER2表达判定上的精确性[25]。
2.2" HER2放射性分子探针在卵巢癌中的应用
HER2在卵巢癌增殖中具关键作用,为预测性生物标志物,评估其过表达有助于制定最佳治疗方案。有研究将短半衰期核素68Ga标记于HER2靶向小型肽制得的探针68Ga-DOTA-(Ser)3-LTVSPWY在卵巢癌SKOV-3肿瘤皮下迅速蓄积,实现短时间内的高对比度成像。此外,该探针在肝脏中的代谢有助于肝转移灶的HER2成像,且使用68Ga代替99mTc可提高HER2检测的灵敏度和表达的定量准确性[34]。在首次临床前研究中,研究者采用了一种创新的同源二聚体策略,与原有亲代探针(99mTc-HYNIC- SSSLTVPWY)(99mTc-LY)相比,新型配体探针99mTc-HYNIC-E(SSSLTVPWY)2 (99mTc-DLY) 展现了相似的生物分布特征,同时在体内药代动力学方面表现出显著优势:其消除半衰期和分布半衰期的延长提升了肿瘤的保留率。此外,在对SKOV3肿瘤的成像对比度上,99mTc-DLY也展现出了更高的效能[35]。该研究为制备出更有效的 HER2 靶向能力更强的同源配体探针提供了新思路。[225Ac]Ac-DOTA-2Rs15d是一种采用α粒子发射体225Ac标记的抗HER2单域抗体探针,具有HER2阳性卵巢癌特异性细胞摄取和杀伤能力。该探针与曲妥珠单抗联合使用可提高卵巢癌小鼠平均生存期,可作为曲妥珠单抗的附加疗法。但需进一步研究降低其在肾脏的滞留[27]。在小鼠SKOV3肿瘤模型中,[89Zr]Zr-DFO-MAL-Cys-MZHER2注射后72 h,肿瘤对血/肌肉摄取比与18F或68Ga标记的MZHER2性能相当,肝脏吸收值也相似,表明亲水连接物有效降低腹部本底。临床前研究显示,该示踪剂可特异性、无创检测肿瘤HER2水平[61]。
同样在SKOV3肿瘤模型中,3种亲合体探针[64Cu]DOTA-Cys-ZHER2:342、[64Cu]DOTA-ZHER2:342(Cys39)和[64Cu]DOTA-ZHER2:342-Cys中,[64Cu]DOTA-Cys-ZHER2:342具有最佳亲和力、快速的肿瘤靶向性、良好的肿瘤蓄积性与对比度,可作为适宜的PET探针[62]。
有研究指出使用直接放射性碘标记的DARPin G3变体探针在小鼠SKOV3移植瘤PET/CT检查中效果更佳,因此直接碘化为放射性碘标记DARPin G3的首选临床方法[50]。此外,示踪剂99mTc-HYNIC-(Ser)3-LTVPWY监测裸鼠卵巢肿瘤异种移植化疗后的HER2状态性能优越,但肿瘤摄取率较低需进行下一步优化研究[63]。
2.3" HER2放射性分子探针在胃癌中的应用
在晚期胃癌中,7%~34%的患者存在HER2过表达,因此开发无创全身HER2靶向成像技术对于筛选适用于抗HER2治疗的患者及治疗评估具重大意义,可提高胃癌患者管理水平[64]。研究者设计了一种新型的99mTc和177Lu标记的双靶向HER2和IgG的纳米抗体探针99mTc/177Lu-MIRC213-709,该探针可以与胃癌NCI-N87肿瘤细胞系中的HER2受体特异性结合。MIRC213与MIRC709融合显著改善单体MIRC213药代动力学,半衰期延长,肿瘤/肾脏摄取比提高20.4倍,给药频次减少,降低毒性,具有临床应用潜力[26]。研究发现,探针68Ga-NOTA-MAL-MZHER2在注射后2 h即可进行成像,相比64Cu和89Zr标记的完整抗体,其具有更短的等待时间,提高了患者舒适度和临床应用可行性。同时,该探针具有的快速清除和高图像对比度特点使其适用于难以活检的特殊部位病变评估,如脑、肺、肾上腺和骨转移灶等。凭借不受抗HER2治疗影响的优点,其可用于监测治疗反应和重新评估HER2状态,有助于肿瘤学家及时调整治疗策略。此外,将该探针与ctDNA测序结合还有望克服HER2阳性胃癌的异质性问题[64]。采用N-溴代丁二酰亚胺法对曲妥珠单抗进行124I标记,应用于6例胃癌转移患者的PET显像后发现124I-trastuzumab可用于检测胃癌原发灶和转移灶HER2阳性胃癌病灶。然而,甲状腺对碘化放射性配体的吸收问题还需进一步研究优化[16]。在一项33例HER2 阳性转移性食管胃癌患者的PET/CT临床研究发现,89Zr-trastuzumab PET成像在评估HER2表达及全身病变方面具有优势,尤其对骨病变敏感。但89Zr-Trastuzumab肝摄取高且显像受曲妥珠预治疗影响,需进一步研究其临床应用价值[65]。
2.4" HER2放射性分子探针在肺癌中的应用
根据病理分类,肺癌可细分为NSCLC和小细胞肺癌。化疗为晚期NSCLC首选,但效果有限且副作用严重。HER2在肺癌中过表达,放射性靶向HER2配体-药物偶联物可提高化疗药物肿瘤靶向性,为肺癌靶向化疗提供新机遇[66]。2010年一项研究发现64Cu-DOTA-trastuzumab作为一种PET示踪剂能显示出清晰的HER2阳性肺部肿瘤图像,有效地显示NSCLC中HER2基因的表达情况,这表明它有可能在临床上用于鉴别可能从曲妥珠单抗治疗中获益的患者[67]。培美曲塞(Pemetrexed)是晚期肺腺癌一线治疗的常用药,具有广泛应用、细胞毒性及免疫调节作用,是开发新型靶向化疗药物的优良原料。研究者利用培美曲塞与ZHER2:V2亲和抗体融合,以其C端4个氨基酸(Gly-Gly-Gly-Cys)作为螯合剂对共轭物进行了放射性标记,构建了基于抗HER2的抗肿瘤靶向化疗药物99mTc-ZHER2:V2-pemetrexed[66]。该探针放射化学收率高、稳定性好、血液清除率较快,可特异性靶向HER2阳性肺癌细胞。对于99mTc-ZHER2:V2-pemetrexed,研究发现在HER2阳性NSCLC A549异种移植模型中HER2亲和体成功将细胞毒性药物输送至HER2阳性肺癌细胞,增强了培美曲塞的HER2靶向性,同时保留其抗肿瘤活性。ZHER2:V2-pemetrexed共轭物在靶向性、抗肿瘤效果和安全性上优于培美曲塞[37]。分子药物有望成为HER2阳性肺腺癌诊断和治疗的重要手段。
2.5" HER2放射性分子探针在其他肿瘤中的应用
HER2放射性分子探针不仅在上述疾病的诊断中显示出其应用价值,而且在诸如脑癌、肠癌以及甲状腺癌等其他类型的肿瘤诊疗中也展现出潜在的应用前景。胶质母细胞瘤约占脑癌的15%,其治疗包括手术、放疗和化疗。早期脑癌治愈率较高,高效的非侵入性肿瘤成像探针有助于胶质母细胞瘤的早期诊疗,表现在分期、转移检测、治疗管理和预后方面具有重要价值。有研究首次证明HER2靶向肽可用作胶质瘤的SPECT成像剂,该研究显示,99mTc-HYNIC-(Ser)3-LTVPWY多肽具有对U-87 MG胶质瘤癌细胞高特异性和亲和性、高肿瘤摄取率和高肿瘤与非靶标比等特点,可应用于诊断,因此有望作为胶质瘤SPECT诊断剂应用于临床[68]。对HER2阳性结直肠癌患者进行HER2状态的精确评估有助于肠癌患者从抗HER2靶向治疗中获益。125I-Herceptin具有标记率高、体外稳定性好、与HER2结合特异性高等特点,研究者以HER2阳性MC38小鼠结肠腺癌细胞系建立裸鼠模型,采用125I-Herceptin进行SPECT成像,结果显示,注射125I-Herceptin后12 h即可观察到肿瘤,24 h达峰,且过量非标记Herceptin能显著降低肿瘤摄取。这表明125I-Herceptin是一种有效的SPECT探针,有望用于结肠癌的无创HER2检测[69]。由于甲状腺未分化癌具有去分化性和侵袭性,其临床治疗非常具有挑战性。研究发现,HER2特异性免疫PET成像探针89Zr-Df-pertuzumab进行的PET成像能清晰显示所有皮下甲状腺未分化癌,有助于HER2阳性甲状腺未分化癌患者的诊疗,有临床应用潜力[70]。
3" 展望与小结
目前,应用于PET/SPECT的HER2放射性分子探针大多处于临床前和临床开发阶段。本文综述了不同种类HER2放射性分子探针在乳腺癌、卵巢癌、胃癌、肺癌等HER2阳性肿瘤方面的研究进展。在临床应用方面,放射性元素68Ga、89Zr、64Cu、99mTc等标记抗体、抗体片段、亲合体等配体的HER2靶向探针已经在多个临床试验中进行了测试,并且主要在乳腺癌和胃癌取得了积极的结果。这些探针被用于帮助诊断HER2阳性肿瘤,以及在治疗过程中监测疾病的反应,设计个体化的给药方案改善患者预后。采用放射性元素基于单克隆抗体曲妥珠单抗和帕妥珠单抗的分子探针研究已相对成熟但其在体内稳定性和持久性的欠缺(包括分布不均、半衰期短、免疫反应及药物相互作用等)以及可能出现的耐药性大大限制了其临床应用。为解决这些问题,研究人员正致力于药物设计改良、给药方式优化、联合疗法及个体化医疗等方面的改进工作。HER2靶向抗体片段探针的优势在于较小的分子大小使其更易渗入HER2过表达组织和细胞,在提高探针特异性的同时明显缩短了探针的作用速度。HER2靶向亲合体、纳米探针、小型肽探针因良好的靶向性,较强的组织穿透性且便于合成和修饰在临床研究中应用前景较好。除已有的HER2靶向放射性探针外,研究人员正在开发新型的HER2靶向探针,如将荧光分子与放射性核素结合制成的双模式探针111In‑DTPA‑trastuzumab-IRDye800CW[71]通过双标记抗体模式实现术前和术中肿瘤定位,有助于图像引导手术从而提高肿瘤切除的彻底性。这些探针旨在提高对HER2阳性肿瘤的诊断精度和治疗效果。此外,在成像技术方面,AI技术的引入正在改变传统的医学影像分析方式。AI辅助显微镜可以减少人为评估的视觉误差,提高HER2表达的评估精度。基于AI的影像组学和深度学习技术也在癌症预后预测和治疗反应评估等方面展现出巨大潜力。
总的来说,核素标记HER2靶向分子探针在肿瘤研究中已取得良好进展,但实际应用仍面临一些挑战:需针对患者选择优化,避免HER2阴性患者使用无明显益处;剂量需平衡,过高可能导致辐射伤害,过低影响图像质量;成本效益分析亦不可忽视。未来的研究可能会集中在提高探针的选择性、降低剂量、减少成本以及提高图像质量等方面。此外,随着个性化医疗和精准医疗的发展,HER2放射性分子探针可能会在未来成为更多癌症患者治疗计划的一部分。
参考文献:
[1]" "Galogre M, Rodin D, Pyatnitskiy M, et al. A review of HER2 overexpression and somatic mutations in cancers[J]. Crit Rev Oncol Hematol, 2023, 186: 103997.
[2]" "Zhang XN, Gao Y, Zhang XY, et al. Detailed curriculum vitae of HER2-targeted therapy[J]. Pharmacol Ther, 2023, 245: 108417.
[3]" "Gradishar WJ, O'Regan R, Rimawi MF, et al. Margetuximab in HER2-positive metastatic breast cancer[J]. Future Oncol, 2023, 19(16): 1099-112.
[4]" "Pous A, Notario L, Hierro C, et al. HER2-positive gastric cancer: the role of immunotherapy and novel therapeutic strategies[J]. Int J Mol Sci, 2023, 24(14): 11403.
[5]" "Metebi A, Kauffman N, Xu L, et al. Pb-214/Bi-214-TCMC-Trastuzumab inhibited growth of ovarian cancer in preclinical mouse models[J]. Front Chem, 2023, 11: 1322773.
[6]" "Siegel R, Miller K, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7-33.
[7]" "Ren S, Wang J, Ying J, et al. Consensus for HER2 alterations testing in non-small-cell lung cancer[J]. ESMO Open, 2022, 7(1): 100395.
[8]" "宋宏杰, 周治国, 宋少莉, 等. 放射性核素标记HER2抗体和纳米抗体的分子影像研究进展[J]. 肿瘤影像学, 2020, 29(5): 510-9.
[9]" "Oh DY, Bang YJ. HER2-targeted therapies-a role beyond breast cancer[J]. Nat Rev Clin Oncol, 2020, 17: 33-48.
[10] Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions[J]. Nat Rev Drug Discov, 2023, 22(2): 101-26.
[11]Zhang QQ, Jin L, Gong H. Comparison of her‑2/neu gene amplification or expression between IHC and FISH in BC[J]. Cell Mol Biol, 2022, 67(5): 399-404.
[12] Tolmachev V, Orlova A, Sörensen J. The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer[J]. Semin Cancer Biol, 2021, 72: 185-97.
[13] Nautiyal A, Jha AK, Mithun S, et al. Analysis of absorbed dose in radioimmunotherapy with 177Lu-trastuzumab using two different imaging scenarios: a pilot study[J]. Nucl Med Commun, 2021, 42(12): 1382-95.
[14] Kurdziel KA, Mena E, McKinney Y, et al. First-in-human phase 0 study of" 111In-CHX-A\"-DTPA trastuzumab for HER2 tumor imaging[J]. J Transl Sci, 2019, 5(2). doi: 10.15761/JTS.1000269.
[15] Lee I, Lim I, Byun BH, et al. The prediction of HER2-targeted treatment response using 64Cu-Tetra-azacyclododecanetetra-acetic acid (DOTA)-trastuzumab PET/CT in metastatic breast cancer: a case report[J]. J Breast Cancer, 2022, 25(1): 69-73.
[16] Guo XY, Zhou NN, Chen ZH, et al. Construction of 124I-trastuzumab for noninvasive PET imaging of HER2 expression: from patient-derived xenograft models to gastric cancer patients[J]. Gastric Cancer, 2020, 23(4): 614-26.
[17] Ulaner GA, Carrasquillo JA, Riedl CC, et al. Identification of HER2-positive metastases in patients with HER2-negative primary breast cancer by using HER2-targeted 89Zr-pertuzumab PET/CT[J]. Radiology, 2020, 296(2): 370-8.
[18] Yue TTC, Ge Y, Aprile FA, et al. Site-specific 68Ga radiolabeling of trastuzumab fab via methionine for ImmunoPET imaging[J]. Bioconjug Chem, 2023, 34(10): 1802-10.
[19] Suman SK, Mukherjee A, Pandey U, et al. 68Ga-labeled trastuzumab fragments for ImmunoPET imaging of human epidermal growth factor receptor 2 expression in solid cancers[J]. Cancer Biother Radiopharm, 2023, 38(1): 38-50.
[20] Richter A, Knorr K, Schlapschy M, et al. First In-human medical imaging with a PASylated 89Zr-labeled anti-HER2 fab-fragment in a patient with metastatic breast cancer[J]. Nucl Med Mol Imaging, 2020, 54(2): 114-9.
[21]Sharma R, Kameswaran M, Dash A. Comparative in vitro cytotoxicity studies of 177Lu-CHX-A″-DTPA-trastuzumab and 177Lu-CHX-A″-DTPA-F(ab')2-trastuzumab in HER2-positive cancer cell lines[J]. Cancer Biother Radiopharm, 2020, 35(3): 177-89.
[22] Zhao LZ, Gong JL, Qi QL, et al. 131I-labeled anti-HER2 nanobody for targeted radionuclide therapy of HER2-positive breast cancer[J]. Int J Nanomedicine, 2023, 18: 1915-25.
[23] Qin X, Guo XY, Liu TY, et al. High in-vivo stability in preclinical and first-in-human experiments with [18F]AlF-RESCA-MIRC213: a 18F-labeled nanobody as PET radiotracer for diagnosis of HER2-positive cancers[J]. Eur J Nucl Med Mol Imaging, 2023, 50(2): 302-13.
[24] Ducharme M, Hall L, Eckenroad W, et al. Evaluation of [89Zr]Zr-DFO‑2Rs15d nanobody for imaging of HER2‑positive breast cancer[J]. Mol Pharm, 2023, 20(9): 4629-39.
[25] Zhao LZ, Liu CC, Xing Y, et al. Development of a 99mTc-labeled single‑domain antibody for SPECT/CT assessment of HER2 expression in breast cancer[J]. Mol Pharm, 2021, 18(9): 3616-22.
[26] Hu B, Liu TY, Li LQ, et al. IgG‑binding nanobody capable of prolonging nanobody‑based radiotracer plasma half‑life and enhancing the efficacy of tumor-targeted radionuclide therapy[J]. Bioconjug Chem, 2022, 33(7): 1328-39.
[27] Rodak M, Dekempeneer Y, Wojewódzka M, et al. Preclinical evaluation of 225Ac‑labeled single‑domain antibody for the treatment of HER2pos cancer[J]. Mol Cancer Ther, 2022, 21(12): 1835-45.
[28] Li LQ, Liu TY, Shi LQ, et al. HER2-targeted dual radiotracer approach with clinical potential for noninvasive imaging of trastuzumab‑resistance caused by epitope masking[J]. Theranostics, 2022, 12(12): 5551-63.
[29] Ducharme M, Houson HA, Fernandez SR, et al. Evaluation of 68Ga-radiolabeled peptides for HER2 PET imaging[J]. Diagnostics, 2022, 12(11): 2710.
[30] Sharma AK, Sharma R, Vats K, et al. Synthesis and comparative evaluation of 177Lu-labeled PEG and non-PEG variant peptides as HER2-targeting probes[J]. Sci Rep, 2022, 12(1): 15720.
[31] Sharma AK, Sharma R, Das A, et al. Synthesis and 177Lu labeling of the first retro analog of the HER2-targeting A9 peptide: a superior variant[J]. Bioconjug Chem, 2023, 34(9): 1576-84.
[32] Facca VJ, Al-saden N, Ku A, et al. Imaging of HER2-positive tumors in NOD/SCID mice with pertuzumab fab‑hexahistidine peptide immunoconjugates labeled with [99mTc]‑(I)‑tricarbonyl complex[J]. Mol Imag Biol, 2021, 23(4): 495-504.
[33] Wu Y, Li LQ, Wang ZH, et al. Imaging and monitoring HER2 expression in breast cancer during trastuzumab therapy with a peptide probe 99mTc‑HYNIC‑H10F[J]. Eur J Nucl Med Mol Imaging, 2020, 47(11): 2613-23.
[34] Biabani Ardakani J, Akhlaghi M, Nikkholgh B, et al. Targeting and imaging of HER2 overexpression tumor with a new peptide-based 68Ga-PET radiotracer[J]. Bioorg Chem, 2021, 106: 104474.
[35] Ebrahimi F, Noaparast Z, Abedi SM, et al. Homodimer 99mTc-HYNIC‑E(SSSLTVPWY)2 peptide improved HER2-overexpressed tumor targeting and imaging[J]. Med Oncol, 2022, 39(12): 204.
[36] Li HK, Hasegawa S. Favorable tumor uptake and nuclear transport of Auger electrons by nuclear targeting with 111In-trastuzumab in an intraperitoneal tumor mouse model[J]. Nucl Med Commun, 2022, 43(7): 763-9.
[37] Han JY, Zhao Y, Zhao XM, et al. Therapeutic efficacy and imaging assessment of the HER2-targeting chemotherapy drug ZHER2: V2-pemetrexed in lung adenocarcinoma Xenografts[J]. Invest New Drugs, 2020, 38(4): 1031-43.
[38] Xu YP, Wang LZ, Pan DH, et al. PET imaging of a 68Ga labeled modified HER2 affibody in breast cancers: from xenografts to patients[J]. Br J Radiol, 2019, 92(1104): 20190425.
[39] Liu JY, Guo XY, Wen L, et al. Comparison of renal clearance of [18F]AlF-RESCA-HER2-BCH and [18F]AlF-NOTA-HER2-BCH in mice and breast cancer patients[J]. Eur J Nucl Med Mol Imaging, 2023, 50(9): 2775-86.
[40] Ramos-Suzarte M, Pintado AP, Mesa NR, et al. Diagnostic efficacy and safety of 99mTc-labeled monoclonal antibody ior c5 in patients with colorectal and anal carcinomas: final report clinical trial phase I/II[J]. Cancer Biol Ther, 2007, 6(1): 22-9.
[41] Miao HT, Sun YY, Jin YZ, et al. Application of a novel 68Ga-HER2 affibody PET/CT imaging in breast cancer patients[J]. Front Oncol, 2022, 12: 894767.
[42] Velikyan I, Schweighöfer P, Feldwisch J, et al. Diagnostic HER2-binding radiopharmaceutical, [68Ga]Ga-ABY-025, for routine clinical use in breast cancer patients[J]. Am J Nucl Med Mol Imaging, 2019, 9(1): 12-23.
[43] Bragina O, Chernov V, Larkina M, et al. Phase I clinical evaluation of 99mTc-labeled Affibody molecule for imaging HER2 expression in breast cancer[J]. Theranostics, 2023, 13(14): 4858-71.
[44] Altai M, Garousi J, Rinne SS, et al. On the prevention of kidney uptake of radiolabeled DARPins[J]. EJNMMI Res, 2020, 10(1): 7.
[45] Bragina O, Chernov V, Schulga A, et al. Phase I trial of 99mTc-(HE)3-G3, a DARPin-based probe for imaging of HER2 expression in breast cancer[J]. J Nucl Med, 2022, 63(4): 528-35.
[46] Fay R, Törő I, Schinke AL, et al. Sortase-mediated site-specific conjugation and 89Zr-radiolabeling of designed ankyrin repeat proteins for PET[J]. Mol Pharm, 2022, 19(10): 3576-85.
[47] Bragina O, von Witting E, Garousi J, et al. Phase I study of 99mTc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer[J]. J Nucl Med, 2021, 62(4): 493-9.
[48] Vorobyeva A, Schulga A, Rinne SS, et al. Indirect radioiodination of DARPin G3 using N-succinimidyl- Para-iodobenzoate improves the contrast of HER2 molecular imaging[J]. Int J Mol Sci, 2019, 20(12): 3047.
[49] Tolmachev V, Bodenko V, Oroujeni M, et al. Direct in vivo comparison of 99mTc-labeled scaffold proteins, DARPin G3 and ADAPT6, for visualization of HER2 expression and monitoring of early response for trastuzumab therapy[J]. Int J Mol Sci, 2022, 23(23): 15181.
[50] Vorobyeva A, Sсhulga A, Konovalova E, et al. Comparison of tumor-targeting properties of directly and indirectly radioiodinated designed ankyrin repeat protein (DARPin) G3 variants for molecular imaging of HER2[J]." Int J Oncol, 2019, 54(4): 1209-20.
[51] Larkina M, Plotnikov E, Bezverkhniaia E, et al. Comparative preclinical evaluation of peptide-based chelators for the labeling of DARPin G3 with 99mTc for radionuclide imaging of HER2 expression in cancer[J]. Int J Mol Sci, 2022, 23(21): 13443.
[52] Molavipordanjani S, Khodashenas S, Abedi SM, et al. 99mTc-radiolabeled HER2 targeted exosome for tumor imaging[J]. Eur J Pharm Sci, 2020, 148: 105312.
[53] Ghavami M, Vraka C, Hubert V, et al. Radiolabeled HER2-directed exosomes exhibit improved cell targeting and specificity[J]. Nanomed-Nanotechnol Biol Med, 2021, 16(7): 553-67.
[54] Wen L, Xia L, Guo XY, et al. Multimodal imaging technology effectively monitors HER2 expression in tumors using trastuzumab-coupled organic nanoparticles in patient‑derived xenograft mice models[J]. Front Oncol, 2021, 11: 778728.
[55] Ding N, Sano K, Shimizu Y, et al. Development of gold nanorods conjugated with radiolabeled anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody as single-photon emission computed tomography/photoacoustic dual‑imaging probes targeting HER2-positive tumors[J]." Biol Pharm Bull, 2020, 43(12): 1859-66.
[56]" Pérez-García JM, Gebhart G, Borrego MR, et al. Chemotherapy de-escalation using an 18F-FDG-PET-based pathological response-adapted strategy in patients with HER2-positive early breast cancer (PHERGain): a multicentre, randomised, open‑label, non-comparative, phase 2 trial[J]. Lancet Oncol, 2021, 22(6): 858-71.
[57] Woo SK, Jang SJ, Seo MJ, et al. Development of 64Cu‑NOTA-trastuzumab for HER2 targeting: a radiopharmaceutical with improved pharmacokinetics for human studies[J]. J Nucl Med, 2019, 60(1): 26-33.
[58]" Lee I, Lim I, Byun BH, et al. A preliminary clinical trial to evaluate 64Cu‑NOTA‑Trastuzumab as a positron emission tomography imaging agent in patients with breast cancer[J]. EJNMMI Res, 2021, 11(1): 8.
[59] Linders DGJ, Deken MM, van Dam MA, et al. 89Zr-trastuzumab PET/CT imaging of HER2-positive breast cancer for predicting pathological complete response after neoadjuvant systemic therapy: a feasibility study[J]. Cancers, 2023, 15(20): 4980.
[60] Yeh R, O'Donoghue JA, Jayaprakasam VS, et al. First‑in‑human evaluation of site-specifically labeled 89Zr-pertuzumab in patients with HER2-positive breast cancer[J]. J Nucl Med, 2024, 65(3): 386-93.
[61] Xu YP, Wang LZ, Pan DH, et al. Synthesis of a novel 89Zr-labeled HER2 affibody and its application study in tumor PET imaging[J]. EJNMMI Res, 2020, 10(1): 58.
[62] Qi SB, Hoppmann S, Xu YD, et al. PET imaging of HER2-positive tumors with Cu-64-labeled affibody molecules[J]. Mol Imaging Biol, 2019, 21(5): 907-16.
[63] Avan Z, Biabani Ardakani J, Talebpour Amiri F, et al. The potential usefulness of 99mTc-HYNIC-(Ser)3-LTVPWY peptide for predicting HER2 status alteration after chemotherapy in ovarian tumor-bearing mice[J]. Cancer Biother Radiopharm, 2022, 37(9): 862-9.
[64] Zhou NN, Liu C, Guo XY, et al. Impact of 68Ga-NOTA-MAL-MZHER2 PET imaging in advanced gastric cancer patients and therapeutic response monitoring[J]. Eur J Nucl Med Mol Imaging, 2021, 48(1): 161-75.
[65] Lumish MA, Maron SB, Paroder V, et al. Noninvasive assessment of human epidermal growth factor receptor 2 (HER2) in esophagogastric cancer using 89Zr-trastuzumab PET: a pilot study[J]. J Nucl Med, 2023, 64(5): 724-30.
[66] Jiao HL, Zhao XM, Liu JH, et al. In vivo imaging characterization and anticancer efficacy of a novel HER2 affibody and pemetrexed conjugate in lung cancer model[J]. Nucl Med Biol, 2019, 68/69: 31-9.
[67]Paudyal P, Paudyal B, Hanaoka H, et al. Imaging and biodistribution of Her2/neu expression in non‑small cell lung cancer xenografts with Cu-labeled trastuzumab PET[J]. Cancer Sci, 2010, 101(4): 1045-50.
[68] Shahsavari S, Shaghaghi Z, Abedi SM, et al. Evaluation of 99mTc-HYNIC-(ser)3-LTVPWY peptide for glioblastoma imaging[J]. Int J Radiat Biol, 2020, 96(4): 502-9.
[69] Pan GX, Li DN, Li X, et al. SPECT/CT imaging of HER2 expression in colon cancer-bearing nude mice using 125I-Herceptin[J]. Biochem Biophys Res Commun, 2018, 504(4): 765-70.
[70]Wei WJ, Jiang DW, Rosenkrans ZT, et al. HER2-targeted multimodal imaging of anaplastic thyroid cancer[J]. Am J Cancer Res, 2019, 9(11): 2413-27.
[71] Deken MM, Bos DL, Tummers WSFJ, et al. Multimodal image-guided surgery of HER2-positive breast cancer using[111In]In-DTPA-trastuzumab-IRDye800CW in an orthotopic breast tumor model[J]. EJNMMI Res, 2019, 9(1): 98.
(编辑:孙昌朋)