急性缺血性脑卒中出血转化血生化及影像学预测因素的研究进展
2024-07-06杨军周敬华
杨军 周敬华
摘要:急性缺血性脑卒中(AIS)是最常见的脑卒中类型,我国的发病率位居世界第一。出血转化是其致命的并发症之一,可导致预后不良甚至死亡。尽早识别出血转化的危险因素可在一定程度上降低其发生率和严重程度。本文就预测脑卒中后出血转化出现的血生化标志物以及神经影像学指征进行综述,以期为临床早期判断和预防提供参考。
关键词:急性缺血性脑卒中;出血转化;血生化;影像学;预测因素
中图分类号:R743.3 文献标识码:A DOI:10.3969/j.issn.1006-1959.2024.12.042
文章编号:1006-1959(2024)12-0183-06
Research Progress on Blood Biochemistry and Imaging Predictors of Hemorrhage Transformation
in Acute Ischemic Stroke
Abstract:Acute ischemic stroke (AIS) is the most common type of stroke, and the incidence in China ranks first in the world. Hemorrhagic transformation is one of its fatal complications, which can lead to poor prognosis and even death. Early identification of risk factors for hemorrhagic transformation can reduce its incidence and severity to a certain extent. This article reviews the blood biochemical markers and neuroimaging indications for predicting hemorrhagic transformation after stroke, in order to provide reference for early clinical judgment and prevention.
Key words:Acute ischemic stroke;Hemorrhagic transformation;Blood biochemistry;Imaging;Predictor
急性缺血性脑卒中(acute ischemic stroke, AIS)是最常见的脑卒中类型,我国AIS发病率位居世界第一[1]。出血转化(hemorrhagic transformation, HT)是AIS致命的并发症之一,可导致AIS患者预后不良甚至死亡[2]。HT的具体机制尚不完全清楚,目前认为HT主要与梗死后炎症反应、血脑屏障毁坏、缺血再灌注伤害、氧化应激及氮化应激等相关。随着对HT发生机制的深入研究,越来越多学者发现其中所涉及的血生化标志或其他指标有望成为HT的预测因素。神经影像学是诊断HT的直接证据,可以明确病灶性质(缺血或出血)、确认血管闭塞或狭窄、评估缺血半暗带区灌注情况,为预测和诊断HT提供可视化依据。本文就预测脑卒中后HT出现的血生化标志物以及神经影像学指征予以综述,以期为临床早期判断和预防提供参考。
1 HT的概念
HT是指急性脑梗死后缺血区血管重新恢复血流灌注导致的出血。其诊断主要依靠影像学证据,因此脑梗死出血转化多被认定为初次头颅CT/MRI未发现出血,而再次头颅CT/MRI检查时发现有颅内出血[3],或按照初次头颅CT/MRI可以确定的出血性梗死[4]。根据出血前是否使用增加出血风险的治疗方法分为自发性HT和继发性(治疗性)HT[3],继发性HT的发生率及严重程度往往高于自发性HT。根据临床表现分为无症状HT和有症状HT。根据影像学诊断依据有最常用的欧洲急性卒中协作中心分型[5],以及在其基础上加入之前未分类脑出血(如脑室内出血等)的Heidelberg分型[6]。
2 HT预测的血生化标志物
2.1基质金属蛋白酶-9 基质金属蛋白酶-9(MMP-9)是基质金属蛋白酶(MMPs)中的一种,它可以降解血管周围基底膜的主要成分。MMP-9浓度的升高可加重脑血管屏障的损伤,并增加其通透性,在脑HT中起着重要作用[7]。在过去的研究中发现[8],AIS患者在阿替普酶静脉溶栓后,发生HT的风险增加,这与阿替普酶通过上调MMP-9的表达、促进MMP-9释放等相关。而在针对未经治疗的AIS患者研究中发现[9],中风后24 h内血浆MMP-9浓度>181.7 ng/ml是AIS患者自发性HT的独立预测因子。而在一项前瞻性研究中显示[10],MMP-9在AIS患者机械取栓术后HT的发生中没有预测价值,这可能与血管内手术直接损伤血管壁的程度比缺血导致的血脑屏障破坏更加严重相关。
2.2卵泡抑素样蛋白-1 卵泡抑素样蛋白-1(FSTL1)是在神经系统中发现的一种外泌性糖蛋白[11],受缺血应激和促炎介质诱导后在人体组织中表达。FSTL1具有多种重要的生物学功能,包括调控代谢和凋亡、炎症反应等[12]。关于FSTL1在心血管疾病方面的调控已有较多研究。近年来,FSTL1在AIS及HT中的作用成为热门研究对象,在多项研究中提到FSTL1可以调节MMP-9的表达[13,14]。可见,FSTL1参与AIS的发生发展,并与AIS患者HT的发生密切相关。研究表明[15],FSTL1促进AIS发生的机制可能与促进患者脑组织炎症反应的发生或加速神经元凋亡有关。Ling C等[16]的研究表明,高水平的FSTL1和MMP-9与AIS患者的HT有很强的相关性,且二者联合诊断价值高于单独检测。牛壮[17]在其研究中表明,血清FSTL1水平对预测HT的发生具有一定价值。FSTL1作为一种新的预测HT发生的指标,在HT发生中的具体机制及能否成为独立预测因子还需要进一步研究。
2.3中性粒细胞与淋巴细胞比值 炎症反应是促成HT发生的重要机制之一,炎性细胞水平在预测HT中的作用不可忽视。然而单一细胞数的预测能力有限,因此需要找寻合适的炎症指标。中性粒细胞与淋巴细胞比值(neutrophil-to-lymphocyte ratio, NLR)很好地解决了这个问题,它代表两种炎症细胞间的平衡,在AIS事件发生时,组织缺氧会促进脑实质内的炎症反应。在AIS发生后的3 h内,中性粒细胞作为第一批穿透缺氧组织的细胞之一被招募到脑组织损伤部位[18],并对血脑屏障造成损害,进一步导致周围组织的受损[19]。既往研究表明[20],NLR≥10.59是症状性HT的高危因素。在治疗性HT方面,多项研究结果显示[21-23],NLR是AIS患者静脉溶栓后HT的独立预测因素。Li SJ等[24]研究发现,血栓切除术后NLR水平是前循环AIS患者HT的重要预测因素,其最佳临界值为8.4。
2.4中性粒细胞与高密度脂蛋白比值、单核细胞与高密度脂蛋白比值 血脂水平与HT之间存在较强的相关性[25]。在过去的一项研究中显示[26],高密度脂蛋白水平是HT风险增加的独立风险因素。高密度脂蛋白可通过调节炎症过程中活化的中性粒细胞的功能,从而影响自身的组成和活性[27]。中性粒细胞与高密度脂蛋白比值(neutrophil to high-density lipoprotein ratio, NHR)作为一种新的血清标志物,可同时反映炎症和脂质水平,在近年的研究中被用来观察与脑HT发生的相关性。现有研究结果表明[28],NHR是急性卒中患者HT的可靠且简单的独立预测指标。单核细胞与高密度脂蛋白比值(monocyte to high-density lipoprotein ratio, MHR)也被认为与HT的发生有关,在Wang Y等[29]的研究中发现,MHR是HT发生的一种保护性指标,即低MHR与缺血性中风后HT和症状性HT的风险增加均有关。然而这与另一项研究所展示的结论相反,Xia L等[30]在其针对AIS患者静脉溶栓治疗的研究中发现,高MHR可能独立地与较高的HT风险相关。在最新的研究中显示[31],在采用静脉溶栓的AIS患者中,低MHR水平与HT风险增加独立相关,且这一结论只存在于大动脉粥样硬化类型中。导致这些不同研究结果的原因可能与不同单核细胞亚型在AIS患者HT发生的机制中发挥不同的功能有关。目前关于单核细胞和高密度脂蛋白参与HT的研究较少,潜在机制尚不清楚,还需要更多研究来探讨不同单核细胞亚型和高密度脂蛋白在HT中的具体作用。
2.5血栓弹力图 血栓弹力图(thrombelastograph, TEG)可用于实时测量凝血过程的不同方面,包括血凝块形成的速率、强度和稳定性,可以在患者床边快速完成。TEG可全面动态反应凝血开始-血凝块溶解过程,评估凝血功能,目前多用于指导创伤止血及手术治疗。既往有研究表明[32],TEG可能预测HT的发生。在最新一项研究结果显示[33],血清TEG检测各参数(凝血反应时间、凝血形成时间、凝血形成速率和凝血最终强度)均与脑卒中机械取栓术后发生HT存在密切关系,是其独立影响因素,且在早期评估方面具有较高价值。在入院时使用TEG谱可以预测缺血性卒中急性期HT的发生。Yu G等[34]研究结果表明,TEG R值<5 min可识别院内HT风险增加的患者,其风险增加了3.2倍。近年来,TEG逐渐被用来检测异常出血和血管阻塞,但有关预测HT的研究甚少。预测HT的TEG各检测参数具体临界值还需要大量深入研究来给出答案。
3 HT预测的神经影像学标志物
3.1 CT平扫 CT平扫(non-contrast CT, NCCT)具有操作简便、安全、快速等特点,是评估AIS患者最常见的成像方式。阿尔伯塔卒中早期CT评分(Alberta Stroke Program early CT Score, ASPECTS)是一种半定量评分系统,可对大脑中动脉供血区早期缺血性改变做出精确评估,已被普遍用于评估AIS治疗手段及预测患者预后。已有多项研究表明[35,36],ASPECTS与治疗后HT发生呈负相关。有研究结果显示[37],后循环ASPECT评分对HT的发生具有高特异性和高敏感性预测价值,且最佳预测值为7。Gács G等[38]提出大脑中动脉高密度征是最常见的脑动脉高密度征,且相关研究证实了其在AIS患者中的存在和预测作用[39]。一项回顾性研究表明[40],大脑中动脉高密度征可以预测未接受溶栓治疗AIS患者的HT和不良结果,并且HT的发生与大脑中动脉高密度征的长度独立相关。Kang Z等[41]在其研究中发现,NCCT上的近端HMCAS与无症状HT独立相关。大脑中动脉高密度征可用于预测HT发生,可能与它在一定程度上反映血栓性质及中风病因有关。
3.2 CT灌注成像 CT灌注成像(CT perfusion,CTP)已广泛用于AIS患者诊断、预后及并发症的研究中,可以直观地评估缺血核心和缺血半暗带[42,43]。既往研究表明CTP常用参数均可预测HT的发生,包括脑血容量[44,45]、脑血流量[42,46]、平均通过时间[47]、达峰时间[48]、残余功能的达峰时间[49]和相对表面渗透性[50,51]。其中相对脑血容量=1.09[52]、相对脑血流量<0.48[47]、相对平均通过时间=1.3[47]、达峰时间=0.27 s[48]、功能残余的达峰时间>14 s[49]均可作为HT的独立预测因子。尽管CTP常用参数在HT的预测中均有意义,然而在目前的诸多研究显示,相对脑血流量是应用最多的指标。Langel C等[46]的研究表明,相对脑血流量对HT的预测价值最高,这可能与其能更好地区分缺血核心和缺血半暗带有关。相对于单一参数,多个参数联合应用可能更具准确性,然而目前有关CTP多个参数联合预测HT的研究较少,且缺乏标准化,还需进一步深入研究。
3.3磁共振成像 在运用磁共振成像(magnetic resonance imaging, MRI)预测AIS患者HT的诸多研究中,液体衰减反转恢复序列(fluid attenuated inversion recovery, FLAIR)、弥散加权成像(diffusion-weighted imaging, DWI)以及灌注加权成像显示出较好的结果[53]。Jha R等[54]在研究中提到,FLAIR比率与MMP-9和出血风险相关,中风急性期的FLAIR变化可能会预测出HT。在近年的研究中发现[55],当DWI异常体积临界为4 cm3时,其预测AIS静脉溶栓后症状性HT的敏感度为78%、特异度为58%。也有研究探索FLAIR-DWI不匹配与HT之间的关系[56],虽然结果与预期有差距,但这也为HT的预测提供了方向。相较与CT,MRI相关序列及影像指标预测HT更加缺乏标准化,这可能与研究人群、成像设备、对比剂以及阅片师水平的差异有关。与CTP相比,MRI可能会对血脑屏障的破坏提供更精确的评估[57]和更高的诊断价值[58]。
4总结
除了上述血生化标志物外,铁蛋白、细胞纤维连接蛋白、钙结合蛋白也与HT的发生有关,这在多项实验中已得到证实。目前研究报道中,纤维蛋白原与白蛋白比值、血清低镁、高尿酸、预后营养指数在预测HT发生方面也有一定潜力,但仍需要更加深入的研究。在神经影像学方面,随着人工智能的发展,机器阅片也来越来精准,促进了影像组学的飞跃发展,这在一定程度上减少了阅片原因所产生的误差。已有研究发现基于MRI的影像组学和机器学习分析是预测急性脑卒中HT的重要工具,对早期准确识别HT高风险患者具有较高的效能。而根据NCCT图像建立临床放射学模型,亦可以帮助一线医生识别出具有明显较高HT风险的患者。总之,HT作为AIS严重并发症之一,应尽早预测,以最大程度减少其发生,将危险扼杀在摇篮之中。
参考文献:
[1]Wang D,Liu J,Liu M,et al.Patterns of Stroke Between University Hospitals and Nonuniversity Hospitals in Mainland China: Prospective Multicenter Hospital-Based Registry Study[J].World Neurosurg,2017,98:258-265.
[2]Zubair AS,Sheth KN.Hemorrhagic Conversion of Acute Ischemic Stroke[J].Neurotherapeutics,2023,20(3):705-711.
[3]?lvarez-Sabín J,Maisterra O,Santamarina E,et al.Factors influencing haemorrhagic transformation in ischaemic stroke[J].Lancet Neurol,2013,12(7):689-705.
[4]Chen G,Wang A,Zhao X,et al.Frequency and risk factors of spontaneous hemorrhagic transformation following ischemic stroke on the initial brain CT or MRI: data from the China National Stroke Registry (CNSR)[J].Neurol Res,2016,38(6):538-544.
[5]Guenego A,Lecler A,Raymond J,et al.Hemorrhagic transformation after stroke: inter- and intrarater agreement[J].Eur J Neurol,2019,26(3):476-482.
[6]Neuberger U,M?hlenbruch MA,Herweh C,et al.Classification of Bleeding Events: Comparison of ECASS III (European Cooperative Acute Stroke Study) and the New Heidelberg Bleeding Classification[J].Stroke,2017,48(7):1983-1985.
[7]Dang B,Duan X,Wang Z,et al.A Therapeutic Target of Cerebral Hemorrhagic Stroke: Matrix Metalloproteinase- 9[J].Curr Drug Targets,2017,18(12):1358-1366.
[8]Ma G,Pan Z,Kong L,et al.Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: Potential mechanisms, targets, therapeutic drugs and biomarkers[J].Int Immunopharmacol,2021,90:107216.
[9]Yuan R,Tan S,Wang D,et al.Predictive value of plasma matrix metalloproteinase-9 concentrations for spontaneous haemorrhagic transformation in patients with acute ischaemic stroke: A cohort study in Chinese patients[J].J Clin Neurosci,2018,58:108-112.
[10]Iwamoto T,Kitano T,Oyama N,et al.Predicting hemorrhagic transformation after large vessel occlusion stroke in the era of mechanical thrombectomy[J].PLoS One,2021,16(8):e0256170.
[11]Xiang S,Zhang Y,Jiang T,et al.Knockdown of Follistatin-like 1 disrupts synaptic transmission in hippocampus and leads to cognitive impairments[J].Exp Neurol,2020,333:113412.
[12]Chaly Y,Hostager B,Smith S,et al.Follistatin-like protein 1 and its role in inflammation and inflammatory diseases[J].Immunol Res,2014,59(1-3):266-272.
[13]Sundaram GM,Ismail HM,Bashir M,et al.EGF hijacks miR-198/FSTL1 wound-healing switch and steers a two-pronged pathway toward metastasis[J].J Exp Med,2017,214(10):2889-2900.
[14]Ni X,Cao X,Wu Y,et al.FSTL1 suppresses tumor cell proliferation, invasion and survival in non-small cell lung cancer[J].Oncol Rep,2018,39(1):13-20.
[15]Liu YP,Ju ML,Yu FQ.Clinical significance of FSTL1, Bax, Bcl-2 in acute cerebral infarction and its relationship with hemorrhagic transformation[J].Eur Rev Med Pharmacol Sci,2020,24(16):8447-8457.
[16]Ling C,Cao S,Kong X.Changes of FSTL1 and MMP-9 levels in patients with acute cerebral infarction and its relationship with hemorrhagic transformation[J].J Clin Neurosci2022,99:164-168.
[17]牛壮.中高海拔地区血清FSTL1、β淀粉样蛋白水平对急性脑梗死出血转化的预测及相关性研究[D].西宁:青海大学,2022.
[18]Chu HX,Kim HA,Lee S,et al.Immune cell infiltration in malignant middle cerebral artery infarction: comparison with transient cerebral ischemia[J].J Cereb Blood Flow Metab,2014,34(3):450-459.
[19]Denorme F,Portier I,Rustad JL,et al.Neutrophil extracellular traps regulate ischemic stroke brain injury[J].J Clin Invest,2022,132(10):e154225.
[20]Zhu W,Leys D,Guo Z,et al.Higher neutrophil counts before thrombolysis for cerebral ischemia predict worse outcomesAuthor Response[J].Neurology,2016,86(11):1077-1077.
[21]Switońska M,Piekus-S?omka N,S?omka A,et al.Neutrophil-to-Lymphocyte Ratio and Symptomatic Hemorrhagic Transformation in Ischemic Stroke Patients Undergoing Revascularization[J].Brain Sci,2020,10(11):771.
[22]Wang C,Zhang Q,Ji M,et al.Prognostic value of the neutrophil-to-lymphocyte ratio in acute ischemic stroke patients treated with intravenous thrombolysis: a systematic review and meta-analysis[J].BMC Neurol,2021,21(1):191.
[23]Xie J,Pang C,Yu H,et al.Leukocyte indicators and variations predict worse outcomes after intravenous thrombolysis in patients with acute ischemic stroke[J].J Cereb Blood Flow Metab,2023,43(3):393-403.
[24]Li SJ,Cao SS,Huang PS,et al.Post-operative neutrophil-to-lymphocyte ratio and outcome after thrombectomy in acute ischemic stroke[J].Front Neurol,2022,13:990209.
[25]Lin SF,Chao AC,Hu HH,et al.Low Cholesterol Levels Increase Symptomatic Intracranial Hemorrhage Rates After Intravenous Thrombolysis: A Multicenter Cohort Validation Study[J].J Atheroscler Thromb,2019,26(6):513-527.
[26]Messé SR,Pervez MA,Smith EE,et al.Lipid profile, lipid-lowering medications, and intracerebral hemorrhage after tPA in get with the guidelines-stroke[J].Stroke,2013,44(5):1354-1359.
[27]Curcic S,Holzer M,Frei R,et al.Neutrophil effector responses are suppressed by secretory phospholipase A2 modified HDL[J].Biochim Biophys Acta,2015,1851(2):184-193.
[28]Zhang R,Jin F,Zheng L,et al.Neutrophil to High-Density Lipoprotein Ratio is Associated with Hemorrhagic Transformation in Patients with Acute Ischemic Stroke[J].J Inflamm Res,2022,15:6073-6085.
[29]Wang Y,Cheng Y,Song Q,et al.The association between monocyte to high-density lipoprotein ratio and hemorrhagic transformation in patients with acute ischemic stroke[J].Aging (Albany NY),2020,12(3):2498-2506.
[30]Xia L,Xu T,Zhan Z,et al.High ratio of monocytes to high-density lipoprotein is associated with hemorrhagic transformation in acute ischemic stroke patients on intravenous thrombolysis[J].Front Aging Neurosci,2022,14:977332.
[31]Meng D,Li Y,Ju T,et al.Low MHR Is Associated with Hemorrhagic Transformation in Acute Large Artery Atherosclerosis Ischemic Stroke Patients with Intravenous Thrombolysis[J].Clin Appl Thromb Hemost,2023,29:10760296231167849.
[32]McDonald MM,Wetzel J,Fraser S,et al.Thrombelastography does not predict clinical response to rtPA for acute ischemic stroke[J].J Thromb Thrombolysis,2016,41(3):505-510.
[33]韩冰莎,李娇,栗艳茹,等.血栓弹力图对急性缺血性脑卒中机械取栓术后出血转化的预测价值[J].中国实用神经疾病杂志,2023,26(4):403-409.
[34]Yu G,Kim YJ,Jeon SB,et al.Thromboelastography for prediction of hemorrhagic transformation in patients with acute ischemic stroke[J].Am J Emerg Med,2020,38(9):1772-1777.
[35]Wardlaw JM,von Kummer R,Farrall AJ,et al.A large web-based observer reliability study of early ischaemic signs on computed tomography. The Acute Cerebral CT Evaluation of Stroke Study (ACCESS)[J].PLoS One,2010,5(12):e15757.
[36]MacCallum C,Churilov L,Mitchell P,et al.Low Alberta Stroke Program Early CT score (ASPECTS) associated with malignant middle cerebral artery infarction[J].Cerebrovasc Dis,2014,38(1):39-45.
[37]Chen L,Xu Z,Zhang C,et al.Post-ASPECTS based on hyperdensity in NCCT immediately after thrombectomy is an ultra-early predictor of hemorrhagic transformation and prognosis[J].Front Neurol,2022,13:887277.
[38]Gács G,Fox AJ,Barnett HJ,et al.CT visualization of intracranial arterial thromboembolism[J].Stroke,1983,14(5):756-762.
[39]Ume KL,Dandapat S,Weber MW,et al.Absent hyperdense middle cerebral artery sign is associated with poor functional outcome after mechanical thrombectomy[J].Int J Stroke,2022,17(1):101-108.
[40]Hou J,Sun Y,Duan Y,et al.Hyperdense middle cerebral artery sign in large cerebral infarction[J].Brain Behav,2021,11(5):e02116.
[41]Kang Z,Wu L,Sun D,et al.Proximal hyperdense middle cerebral artery sign is associated with increased risk of asymptomatic hemorrhagic transformation after endovascular thrombectomy: a multicenter retrospective study[J].J Neurol,2023,270(3):1587-1599.
[42]Kameda K,Uno J,Otsuji R,et al.Optimal thresholds for ischemic penumbra predicted by computed tomography perfusion in patients with acute ischemic stroke treated with mechanical thrombectomy[J].J Neurointerv Surg,2018,10(3):279-284.
[43]Rava RA,Snyder KV,Mokin M,et al.Enhancing performance of a computed tomography perfusion software for improved prediction of final infarct volume in acute ischemic stroke patients[J].Neuroradiol J,2021,34(3):222-237.
[44]Hermitte L,Cho TH,Ozenne B,et al.Very low cerebral blood volume predicts parenchymal hematoma in acute ischemic stroke[J].Stroke,2013,44(8):2318-2320.
[45]孙凤涛,张厚宁,禹璐,等.CT灌注成像参数在预测急性脑梗死溶栓后出血转化中的价值[J].中华老年心脑血管病杂志,2021,23(1):63-66.
[46]Langel C,Popovic KS.Infarct-core CT perfusion parameters in predicting post-thrombolysis hemorrhagic transformation of acute ischemic stroke[J].Radiol Oncol,2018,53(1):25-30.
[47]Souza LC,Payabvash S,Wang Y,et al.Admission CT perfusion is an independent predictor of hemorrhagic transformation in acute stroke with similar accuracy to DWI[J].Cerebrovasc Dis,2012,33(1):8-15.
[48]Adebayo OD,Culpan G.Diagnostic accuracy of computed tomography perfusion in the prediction of haemorrhagic transformation and patient outcome in acute ischaemic stroke: A systematic review and meta-analysis[J].Eur Stroke J,2020,5(1):4-16.
[49]Yassi N,Parsons MW,Christensen S,et al.Prediction of poststroke hemorrhagic transformation using computed tomography perfusion[J].Stroke,2013,44(11):3039-3043.
[50]Li Q,Gao X,Yao Z,et al.Permeability Surface of Deep Middle Cerebral Artery Territory on Computed Tomographic Perfusion Predicts Hemorrhagic Transformation After Stroke[J].Stroke,2017,48(9):2412-2418.
[51]李翔,刘欢,熊秋霞,等.全脑灌注联合多时相CT血管成像预测大脑中动脉M1段闭塞卒中患者出血转化[J].中国医学影像学杂志,2020,28(8):575-579.
[52]Jain AR,Jain M,Kanthala AR,et al.Association of CT perfusion parameters with hemorrhagic transformation in acute ischemic stroke[J].AJNR Am J Neuroradiol,2013,34(10):1895-1900.
[53]Suh CH,Jung SC,Cho SJ,et al.MRI for prediction of hemorrhagic transformation in acute ischemic stroke: a systematic review and meta-analysis[J].Acta Radiol,2020,61(7):964-972.
[54]Jha R,Battey TW,Pham L,et al.Fluid-attenuated inversion recovery hyperintensity correlates with matrix metalloproteinase-9 level and hemorrhagic transformation in acute ischemic stroke[J].Stroke,2014,45(4):1040-1045.
[55]Caparros F,Kuchcinski G,Drelon A,et al.Use of MRI to predict symptomatic haemorrhagic transformation after thrombolysis for cerebral ischaemia[J].J Neurol Neurosurg Psychiatry,2020,91(4):402-410.
[56]Wouters A,Scheldeman L,Dupont P,et al.Hyperintense acute reperfusion marker associated with hemorrhagic transformation in the WAKE-UP trial[J].Eur Stroke J,2021,6(2):128-133.
[57]Thrippleton MJ,Backes WH,Sourbron S,et al.Quantifying blood-brain barrier leakage in small vessel disease: Review and consensus recommendations[J].Alzheimers Dement,2019,15(6):840-858.
[58]Zhang XH,Liang HM.Systematic review with network meta-analysis: Diagnostic values of ultrasonography, computed tomography, and magnetic resonance imaging in patients with ischemic stroke[J].Medicine (Baltimore),2019,98(30):e16360.