APP下载

面向“十四五”规划基于灰色GM(1,1)模型的沈阳市物流需求预测分析

2024-06-21尹衍为向尕任亚唯

物流科技 2024年10期
关键词:需求预测沈阳市十四五

尹衍为 向尕 任亚唯

摘 要:“十四五”规划时期,推动东北全面振兴是重要的发展方向。其中物流的发展至关重要。东北地区因其地域特点,物流需求具有不确定性,亟待开展预测方法研究。文章以沈阳市为例,以2008—2022年货运量作为样本数据,提出基于灰色GM(1,1)模型的东北地区物流需求预测方法。通过仿真实验计算2008—2022年的物流需求,经过与实际值对比,对预测结果进行检验与分析,验证了文章所提出的模型是有效的;预测未来5年的物流需求量。实验结果表明,此方法能为沈阳市物流需求的定量分析提供较为准确的基础,同时为政府出台相关政策和企业进行物流规划建设提供参考价值。

关键词:灰色GM(1,1)模型;物流需求预测;货运量;东北地区

中图分类号:F259.27 文献标志码:A DOI:10.13714/j.cnki.1002-3100.2024.10.010

Abstract: In the period of the 14th Five-Year Plan, promoting the overall revitalization of Northeast China is an important development direction. Among them, the development of logistics is crucial. Due to its regional characteristics, the logistics demand in Northeast China is uncertain, so it is urgent to study the forecasting method. This paper takes Shenyang City as an example and takes the freight volume from 2008 to 2022 as the sample data, and proposes the logistics demand forecasting method for Northeast China district based on the GM (1,1) model. The logistics demand for 2008-2022 is caculated through simulation experiments, and the forecast results are tested and analyzed by comparing with the actual value. The logistics demand in the next 5 years is predicted by simulation experiments. The experimental results show that this method provides a more accurate basis for the quantitative analysis of Shenyang's logistics demand and provides reference value for the government to issue relevant policies and enterprises to carry out logistics planning and construction.

Key words: GM (1,1) model; logistics demand forecasting; freight volume; Northeast region

0    引    言

沈阳市地处我国东北南部、辽宁中北部,是东北地区的政治、经济、文化中心,是东北地区联系国内其他地区及我国通向东北亚地区的重要门户。沈阳市交通网络发达,综合交通枢纽地位突出,域内拥有多条高铁和国家干线铁路以及国家一级干线机场,目前已与国内外多个城市和地区实现通航,“一环两弦七放射”的高速公路网也已基本形成。优越的地理位置和交通条件为沈阳加快推进物流体系建设、打造区域物流和国际贸易枢纽奠定了基础,也为深度融入共建“一带一路”创造了有利条件[1]。

“十四五”时期,我国加快发展现代物流产业体系,沈阳市顺应趋势,积极探索物流产业的发展路径和模式。沈阳市是传统工业重镇和重要的装备制造业基地,工业和制造业的发展离不开物流业的支撑。现代物流技术的推广应用和设施条件的不断完善为沈阳市实现城市现代化建设奠定了基础。在“十四五”规划指导下,沈阳市物流行业蓬勃发展,有必要对沈阳市物流需求进行精准预测,把握良好的发展机遇。

关于物流需求预测方面的研究,国内外专家学者针对不同领域和地域的物流实际情况,运用不同的研究方法得出了大量的研究成果。在物流需求预测方面,刘炯[2]基于多元线性回归思想,构建物流需求预测模型,对安徽省的物流进行了合理预测,研究结果表明,第二产业与第三产业发展对安徽省物流需求影响最为显著。于凯丽[3]利用蚁群算法与支持向量机结合,得到优化后的支持向量机预测模型,从而对青岛市的物流需求进行预测。陈敏[4]通过建立神经BP网络模型,选择相应的经济指标为输入指标,预测出成都市未来5年的物流需求规模,为成都市未来一定时期内的物流系统规划提供了理论依据。谭伟华[5]运用多元回归和神经网络作为预测方法,对江西省的物流进行了预测,揭示了物流和经济发展之间的关系,并分析模型预测结果的准确性,给江西省未来一段时间内的物流规划提供了理论参照。韩正超等[6]建立物流需求规模预测指标体系后,以济南市的历年数据建立BP神经网络模型,对济南市进行了物流需求预测。

在冷链物流需求预测方面,兰洪杰等[7]采用神经网络技术通过需求主体数量与人均日消耗量对奥运会期间的食品冷链物流需求量进行了预测。李夏培[8]应用灰色线性组合模型对我国农产品冷链物流需求建立了预测方程,并运用Matlab软件进行了实现。李玉萍等[9]分析了我国果蔬冷链物流的发展现状并提出了相应的对策建议。张言彩等[10]以江苏省城镇居民冷链运输产品的消费总量来度量其冷链物流需求量,并通过传统灰色模型来预测其未来城镇居民冷链物流需求量。柯亚楠[11]以唐山市为例,选取了特定区域主要农产品冷链年流通量为度量指标,运用传统灰色模型对本市主要农产品的产出总量进行了预测,并通过冷链流通率及其平均流转次数计算出了该市2015年的农产品冷链物流需求量及其对冷库的需求量,并结合实地调研冷库数据,测算了2015年唐山市的冷库库容缺口。

在灰色预测模型的应用方面,顾佳敏等[12]计算了不同因素与GDP的灰色关联度,最后选取了货物周转量作为衡量物流需求的关键指标,通过构建灰色GM(1,1)模型对江苏省物流产业的发展提出了建议。皇甫红姣[13]利用灰色预测模型对绵阳市未来10年的农产品产量进行了预测,基于冷链流通率对绵阳市的冷库缺口量进行了估算,从基础设施、物流体系、人才等方面针对性地对当地农产品冷链发展提出了建议。李晗等[14]以北京市为背景,通过分析影响北京市物流需求的相关因素,在构建北京市物流需求预测影响因素指标体系后,将BP神经网络和GM(1,1)模型组合,建立了灰色神经网络组合模型,通过选取近20年的统计数据对未来5年的物流需求进行预测,该组合模型更加提高了模型的精度与参考意义。

GM(1,1)模型是典型的灰色预测模型[12],在对样本数据进行处理后,通过数据的潜在规律,从而对将来的发展趋势做出合理的推断。其适用于样本数量偏少、预测周期较短的数据,该方法对具有不确定性的复杂数据具有较好的预测效果。目前针对沈阳市物流需求预测的研究相对较少,现阶段,沈阳市的物流产业发展前景广阔,有必要对“十四五”规划指导下沈阳市物流的需求进行预测。本文基于GM(1,1)预测模型开展研究,旨在为沈阳市物流需求的定量分析提供依据,同时为政府出台相关鼓励、扶持等政策和企业进行物流规划建设提供参考。

1    GM(1,1)灰色预测模型

1.1    灰色GM(1,1)预测模型的构建

假设原始数列存在n个离散数据,即:

,( =1,2,…,) 。                      (1)

GM(1,1)预测模型的构建包括以下几个步骤[15]。

步骤1:将待预测的离散数据数列进行累加,得到累加数列。即:

,( =1,2,…,) 。                       (2)

其中: 。                                              (3)

步骤2:建立灰色微分方程。对得到的数列运用微分方程构建灰色模型。其中:为未知参数。

步骤3:通过最小二乘法,设,则。其中:

=  ,   = 。                     (4)

步骤4:将所求得的,代入微分方程,可得的预测模型。即:

,( =1,2,…,)。                     (5)

步骤5:递减还原,得出预测值。即:

。                                   (6)

1.2    GM(1,1)预测模型的检验

1.2.1    残差检验

通过预测值与原始数据的相对误差进行检验。设Δ={Δ(1),Δ(2),...,Δ(n)}为绝对残差数列,其中:

Δ(k)=,(k=1,2,…,n)。                         (7)

相对误差为,其中:,(k=1,2,…,n),则平均相对误差为:

。                                                              (8)

1.2.2    关联度检验

1.2.2.1    关联系数

设原始数列为,(k=1,2,…,);参照数列为,(k=1,2,…,n),则称为关联系数。

其中:,(k=1,2,…,);为两级最小差,为两级最大差;为分辨系数,一般取。

1.2.2.2    关联度

设与的关联度为,则。                                (9)

1.2.3    后验差检验

设原始数列的平均方差为,绝对残差数列Δ(k)的平均方差为,则后验差比。其中:

,, 。      (10)

1.2.4    模型精度等级参照标准

通过残差检验、关联度检验和后验差检验分别计算平均相对误差、关联度和后验差比,然后根据数值大小,对照表1进行模型精度检验[16]。

2    基于GM(1,1)灰色预测模型的沈阳市物流需求预测

2.1    沈阳市历年货运量

与文献[5-6,14]类似,本文选取城市总货运量作为物流需求指标。根据沈阳市统计局发布的2022年统计年鉴可知沈阳市2008—2022年的总货运量数据,具体数据如表2所示。

2.2    模型计算

2.2.1    建立灰色预测模型

1)根据表2中的原始数据,根据建模步骤,由数列累加生成:

=[20 731,15 164,17 348,19 406,21 720,21 491,23 489,21 362,22 069,22 889,23 491,19 388,18 918,19 609,17 758] (=1,2,…,15);

=[20 731,35 895,53 243,72 649,94 369,115 860,139 349,160 711,182 780,205 669,229 160,248 548,267 466,287 075,304 833] (=1,2,…,15)。

2)确定矩阵和矩阵。

3)确定参数列。

=,=,

=,则==。

4)建立预测模型,利用EXCEL软件并代入所求与的值,得出沈阳市物流需求预测模型为:

=4 251 934.317-4 231 203.317。

5)递减还原后,预测值为:

=[20 731,19 690,19 781,19 873,19 965,20 057,20 150,20 243,20 337,20 431,20 526,20 621,20 716,20 812,20 909] (=1,2,…,15)。

2.2.2    沈阳市物流需求灰色预测模型的精度检验

2.2.2.1    残差检验

首先,根据表3以及所建立的沈阳市物流需求预测模型得到=[4 251 934.317e^0.004 620 115k-4 231 203.317]。

然后,累减还原得到=[20 731,19 689.877 26,19 781.057 23,19 872.659 45,19 964.685 85,20 057.138 41,

20 150.019 1,20 243.329 9,20 337.07 281,20 431.249 82,20 525.862 95,20 620.914 21,20 716.405 64,20 812.339 26,20 908.717 14]。

最后,求得Δ(k)=[0,4 525.877,2 433.057,466.659 4,1 755.314,1 433.862,3 338.981,1 118.67,1 731.927,2 457.75,2 965.137,1 232.914,1 798.406,1 203.339,3 150.717],=[0,0.298 462,0.140 25,0.024 047,0.080 81 6,0.066 719,0.142 151,0.052 367,0.078 478,0.107 377,0.126 224,0.063 592,0.095 063,0.061 367,0.177 425],则平均相对误差=0.013 7,根据表1模型精度等级参照标准可知,模型合格。

2.2.2.2     关联度检验

首先,由=19 644.425 517,且根据可得参照数列=[19 735.395,19826.785 8,19 918.599 7,20 010.838 9,20 103.505 1,20 196.600 5,20 290.127,20 384.086 7,20 478.481 3,20 573.313 2,20 668.584 2,20 764.296 3,20 860.451 7,20 957.052 4,21 054.100 4],=[136.905 8,137.539 7,138.178 9,138.815 1,139.460 5,140.107,140.756 7,141.411 3,142.063 2,142.724 2,143.38 63,144.041 7,144.712 4,145.380 4]。

然后,求出关联系数=[1.000 0,0.997 4,0.994 3,0.991 3,0.988 3,0.985 4,0.982 4,0.979 4,0.976 4,0.973 4,0.970 4,0.967 5,0.964 5,0.961 5]。

最后,得到关联度=0.980 9,根据表1模型精度等级参照标准可知,=0.980 9>0.9,模型优。

2.2.2.3    后验差检验

=2 316.585 5,=1 101.594 9,则后验差比=0.475 5<0.5模型合格,根据表1模型精度等级参照标准可知,模型合格。

2.2.3    对沈阳市未来5年的物流需求量进行预测

由检验结果可知,本文建立的灰色需求预测模型是有效的,且精度具有一定的可信度,由此可预测得出沈阳市 2023—2027 年的物流需求量,如表4所示。

3    基于GM(1,1)灰色预测模型的沈阳市物流需求预测结果分析

3.1    预测结果分析

根据预测结果,沈阳市物流需求量在未来5年呈现整体向好。此趋势走向的主要原因可能涵盖以下几个方面。

1)经济增长与产业升级:预测期内,沈阳市的经济增长可能持续稳定,或呈现适度上升趋势。经济增长通常会带动产业的扩张和升级,促使更多商品和货物在供应链中流动,从而推动物流需求增加。

2)消费升级和电商发展:随着人们生活水平的提高,消费者对品质和多样性的需求增加,可能引发更多的跨区域物流运输。此外,电子商务的兴起也将刺激快递和配送服务的需求增加。

3)城市建设和基础设施投资:如果沈阳市在“十四五”规划期间继续推进城市建设和基础设施投资,将有助于加强物流网络的连通性和效率,从而促进物流需求的增长。

4)区域合作与贸易活动:沈阳市可能通过加强与周边地区的合作和贸易活动,促进跨境和区域性物流需求的增加。

3.2    沈阳市物流行业发展建议

首先,在“十四五”期间,沈阳市可以积极发展现代物流园区,集中优势资源,提供高效的物流设施和服务。这将有助于提升物流效率,促进物流产业集聚发展。

其次,基于“十四五”规划,沈阳市可以推动物流行业的数字化和智能化发展,应用物联网、大数据、人工智能等技术,提升物流效率和服务质量。

然后,根据“十四五”规划的要求,沈阳市可以加强对物流行业的监管力度,规范市场秩序,同时提供更加优质的物流服务,满足市民和企业的需求。

最后,进一步加强对人才的引进培养,加大人才政策扶持力度,引进、留住更多的科技人才,全方位促进沈阳振兴。

4    结    论

正值东北振兴战略实施20周年之际,结合“十四五”规划,本研究基于灰色预测模型,以沈阳市物流需求为研究对象,对未来5年的物流需求进行预测分析,并采用平均相对误差、后验差和小概率误差进行模型精度检验。结果显示,在灰色GM(1,1)预测模型下,沈阳市物流需求有望呈现稳步增长的趋势。经济增长、产业升级、技术创新等因素将持续推动物流需求的提升。同时,优化基础设施、推广绿色物流、加强数字化转型等措施,可有效提升物流效率和服务质量。然而,应注意环境保护、可持续发展等因素,以确保物流行业的健康可持续发展。综上,本研究为沈阳市在“十四五”期间制定物流产业发展策略提供了有益参考,有助于实现物流行业的稳定增长和可持续发展。本文选取货运量作为衡量物流需求的指标,在未来的研究中,可以考虑更多的因素,以及采用改进的灰色预测模型以便更加精准地预测沈阳市的物流需求,从而更好地为该市“十四五”规划服务。

参考文献:

[1] 沈阳市发展改革委.沈阳市“十四五”现代物流业发展规划[EB/OL].(2022-01-04)[2023-09-10].http://www.shenyang.   gov.cn/zwgk/fdzdgknr/ghxx/zxghx/202201/t20220122_2602468.html.

[2] 刘炯.基于多元线性回归的物流需求预测分析——以安徽省为例[J].四川文理学院学报,2022,32(2):51-58.

[3] 于凯丽.基于ACO-SVM的青岛物流需求预测研究[D].济南:山东科技大学,2021.

[4] 陈敏.基于BP神经网络的成都市的物流需求预测[J].中国储运,2021(5):107-108.

[5] 谭伟华.基于多元回归和神经网络的江西省物流需求预测研究[D].南昌:江西财经大学,2020.

[6] 韩正超,张有云,黄文霞.基于BP神经网络的济南市物流需求预测[J].软件,2020,41(3):149-152,241.

[7] 兰洪杰,汝宜红.2008北京奥运食品冷链物流需求预测分析[J].中国流通经济,2008(2):19-22.

[8] 李夏培.基于灰色线性组合模型的农产品物流需求预测[J].北京交通大学学报(社会科学版),2017,16(1):120-126.

[9] 李玉萍,刘燕群,梁伟红,等.我国果蔬冷链物流发展现状与对策[J].安徽农业科学,2012,40(34):16818-16821.

[10] 张言彩,徐宏峰,郑艳民.江苏省“十二五”城镇居民冷链物流需求量预测——基于GM(1,1)灰色模型的测算[J].安徽  农业科学,2011,39(36):22699-22701.

[11] 柯亚楠.唐山市农产品冷链物流需求分析与预测[D].武汉:华中师范大学,2013.

[12] 顾佳敏,姚惠芳.基于供应链驱动因素浅析冷链物流[J].电子商务,2020(5):9-10.

[13] 皇甫红姣.绵阳市生鲜农产品冷链物流需求预测研究[D].绵阳:西南科技大学,2021.

[14] 李晗,吴珍珍,张雪雪.基于BP神经网络与GM(1,1)组合的北京市物流需求预测模型[J].物流技术,2021,40(1):50-55.

[15] 高秀娟,张志清.基于灰色预测模型的后疫情武汉市物流需求预测分析[J].物流科技,2022,45(7):12-16.

[16] 谢清玲,张文峰,曾涛.广东省水产品冷链物流供需现状分析[J].物流工程与管理,2020,42(4):96-99.

猜你喜欢

需求预测沈阳市十四五
沈阳市盛京小学
沈阳市浑南区第八小学
基于贝叶斯最大熵的电动汽车充电需求预测
沈阳市浑南区创新第一小学
高校“十四五”规划中学科建设要处理好五对关系
“十四五”规划研究的新坐标新方位
中辉大鹏数字电视公司“十四五”发展规划
沈阳市新立堡桥设计
基于计算实验的公共交通需求预测方法
中国中长期煤炭需求预测