珠江口盆地白云凹陷东部古近系文昌组沉积演化特征
2024-04-12刘太勋孙丰春彭光荣汪旭东孙辉解斌苏兆佳
刘太勋 孙丰春 彭光荣 汪旭东 孙辉 解斌 苏兆佳
摘要 :充分利用新三維地震资料,结合测井以及录井资料,对珠江口盆地白云凹陷古近系文昌组层序地层、沉积特征及沉积演化进行研究,重新建立文昌组三级层序格架内的沉积体系演化过程。结果表明:白云凹陷东部文昌组自下而上共划分为5套三级层序,分别对应于初始裂陷期(WCSQ1)、拆离裂陷早期(WCSQ2,WCSQ3)、拆离裂陷晚期(WCSQ4,WCSQ5)3个构造演化阶段;初始裂陷期为多个孤立的箕状半地堑,以发育缓坡轴向物源辫状河三角洲、陡坡近源扇三角洲和滨浅湖沉积为特征;拆离裂陷早期断裂活动强烈,湖盆迅速扩张,半深湖—深湖局限发育,沉积中心北移,北部番禺低隆起发育大型辫状河三角洲沉积;拆离裂陷晚期断裂活动减弱,湖盆逐渐萎缩,沉积中心稳定在白云凹陷中部,主要发育小型辫状河三角洲沉积,滨浅湖发育;大型辫状河三角洲及扇三角洲砂体是白云凹陷东部的有利储集体。
关键词 :沉积相; 沉积模式; 文昌组; 白云凹陷; 珠江口盆地
中图分类号 : TE 122.2 文献标志码 : A
引用格式 :刘太勋,孙丰春,彭光荣,等.珠江口盆地白云凹陷东部古近系文昌组沉积演化特征[J].中国石油大学学报(自然科学版),2024,48(1):77-90.
LIU Taixun, SUN Fengchun, PENG Guangrong, et al. Sedimentary evolution characteristics of Paleogene Wenchang Formation in eastern Baiyun Sag, Pearl River Mouth Basin[J]. Journal of China University of Petroleum(Edition of Natural Science), 2024,48(1):77-90.
Sedimentary evolution characteristics of Paleogene Wenchang Formation in eastern Baiyun Sag, Pearl River Mouth Basin
LIU Taixun 1, SUN Fengchun 1, PENG Guangrong 2,3 , WANG Xudong 2,3 , SUN Hui 2,3 , XIE Bin 1, SU Zhaojia 1
(1.School of Geosciences in China University of Petroleum (East China), Qingdao 266580, China;
2.CNOOC Deepwater Development Company Limited, Shenzhen 518054, China;
3.Shenzhen Branch of CNOOC(China)Company Limited, Shenzhen 518084, China)
Abstract : This study extensively utilizes new 3D seismic data in conjunction with well log and logging data to investigate the sequence stratigraphy, sedimentary characteristics, and sedimentary evolution of the Wenchang Formation in the Paleogene of Baiyun Sag in the Pearl River Mouth Basin. Additionally, it aims to re-establish the sedimentary system evolution process within the third-order sequence framework of the Wenchang Formation. The results reveal that the Wenchang Formation in the eastern Baiyun Sag can be divided into five third-order sequences from bottom to top, corresponding to three tectonic evolution stages: the initial rifting period (WCSQ1), early detachment rifting period (WCSQ2, WCSQ3) and late detachment rifting period (WCSQ4, WCSQ5). During the initial rifting period, several isolated half-grabens were present, characterized by braided river deltas with axial source in gentle slope, near-source fan deltas in steep slope, and shore-shallow lacustrine sediments. During the early stage of the detachment rifting period, intense faulting activity led to the rapid expansion of the lacustrine basin. Semi-deep lacustrine facies developed in a limited manner, the depositional center shifted northward, and the large braided river delta deposition occurred in the Panyu low uplift in the north. As the late stage of detachment rifting period, fault activity weakened, and the lacustrine basin gradually contracted. The depositional center stabilized in the middle of Baiyun Sag, with the predominant development of small braided river delta deposition and shore-shallow lacustrine facies. Notably, large braided river delta and fan delta sand bodies are identified as favorable reservoirs in the eastern Baiyun Sag.
Keywords : sedimentary facies; sedimentary model; Wenchang Formation; Baiyun Sag; Pearl River Mouth Basin
深层—超深层是近年全球油气勘探的新领域,拥有巨大的勘探潜力。白云凹陷为珠江口盆地次级构造单元珠二坳陷中新生代地层发育最全的深大凹陷,最大地层沉积厚度超过13 km,其中古近系文昌组地层厚度约为6 000~7 000 m,埋藏深度多大于 4 000 m [1-3] 。目前针对白云凹陷文昌组的研究多集中于壳幔拆离体系及其伸展过程中岩浆活动的响应等构造作用对沉积体系的控制 [4-9] ,庞雄、柳保军等 [7-9] 认为白云凹陷在陆缘伸展减薄过程中发育壳内、壳间、壳幔3种跨圈层的拆离断层体系,白云凹陷东部在经历拆离断层脆性断裂后受到了强烈岩浆活动的改造,造成湖盆变浅。施和生等 [10-11] 近年研究中识别出白云凹陷文昌组时期存在扇三角洲、辫状河三角洲及湖泊相3种沉积相类型并经历了河 流— 浅湖、超深湖发生、超深湖充填、深湖—浅湖等4个沉积演化阶段 [12-13] 。但目前对白云凹陷文昌组研究受限于地震资料品质影响存在构造演化期次、三级层序界面划分不清,沉积相展布范围不明等问题,直接影响了对研究区文昌组构造-沉积响应及沉积充填模式的认识,制约了白云凹陷东部深层—超深层油气的勘探开发进程。笔者充分利用钻遇文昌组7口探井的测井、录井资料及三维高精度深度域地震资料,建立研究区文昌组新的三级层序地层格架,在此基础上结合构造特征确定各三级层序主要沉积相类型及展布特征,为下一步探究研究区文昌组有利储层分布及油气成藏条件提供基础。
1 地质概况
珠江口盆地白云凹陷位于南海东北部大陆边缘陆坡深水区,沉积地层面积大于2×10 4 km 2,包含4个次级洼陷:白云主洼、白云西洼、白云南洼及白云东洼。研究区位于白云主洼东部,北接番禺低隆起,南部为云荔低隆起,东侧与东沙隆起相邻(图1)。
白云凹陷构造活动复杂,中生代晚白垩世后,构造运动呈现幕式响应特征,新生代古近纪主要经历了神狐运动(65.0 Ma)、珠琼运动一幕(48.0~43.0 Ma)、惠州运动(43.0~38.0 Ma)、珠琼运动二幕(38.0~33.9 Ma)、南海运动(33.9~23.8 Ma)5次大的构造运动 [8,14-15] 。古近系始新统包括神狐组、文昌组、恩平组3套地层(图2)。古近系始新统神狐组主要分布于珠三坳陷南断裂区域,白云凹陷内该组地层缺失。文昌组处于盆地初始形成期,可分为初始裂陷期与拆离裂陷期两个盆地演化阶段 [7] 。初始裂陷期为早期上地壳脆性伸展高角度断裂控制的箕状半地堑断陷盆地,发育陡坡带控制下的扇三角洲体系与规模较小的缓坡带辫状河三角洲体系 [3-4,9] 。拆离裂陷期为地壳脆韧性差异伸展导致的大型低角度向陆伸展拆离断裂体系控制的宽缓断陷盆地,白云凹陷主洼以北主体部分发育北部番禺低隆起挠曲坡折带控制下的大型复合三角洲—湖相沉积体系,白云凹陷东部受岩浆上涌影响发育多隆多洼地貌控制下的三角洲—湖泊沉积体系 [4,8-9,12] 。
2 层序地层格架及界面
结合前人研究 [3,12] ,综合分析地震、测录井等资料的基础上,白云凹陷东部文昌组共识别出两个二级层序界面T80、Tg,分别对应文昌组顶、底界面,其中Tg响应珠琼运动一幕,T80响應于珠琼运动二幕。4个三级层序界面T82、T83、T84、T85,其中T83界面响应于惠州运动,将文昌组划分为上文昌组与下文昌组,分别对应裂陷I a 幕及裂陷I b 幕 [3] 。文昌组自上至下可划分为WCSQ5(文昌组一、二段),WCSQ4(文昌组三段),WCSQ3(文昌组四段),WCSQ2(文昌组五段),WCSQ1(文昌组六段)5个三级层序(图2)。
2.1 二级层序界面
Tg为珠琼运动一幕产生的初始裂陷区域不整合面 [16] ,上覆文昌组沉积层整体超覆于下伏花岗岩基底之上。Tg界面地震特征表现为强振幅高连续的特征,界面上部为中振幅中频连续性较好的文昌组地层,界面下部为弱反射或空白杂乱反射,地层的成层性变差。
T80为珠琼运动二幕产生的区域不整合面,该界面上部恩平组地层整体上超于T80界面,而界面下部的文昌组一、二段地层被T80界面削截,呈现“上超下削”的特征(图3)。T80界面在白云凹陷东部大面积分布,仅在云荔低隆起、番禺低隆起和白云低凸起等高部位上超于Tg界面。T80界面在地震上表现为中—强振幅高连续的反射特征。
2.2 三级层序界面
T85为文昌组六段的顶界面,该阶段白云凹陷东部处于初始裂陷期,为高角度正断层控制的多个孤立深洼。文昌组六段地层呈现明显“南断北超”的楔状特征,加之受后期低角度拆离断层伸张的影响,T85界面不再是一个连续的面,在研究区内相对孤立分布。
T84为文昌组四段的底界面,该阶段白云凹陷东部处于强烈拆离裂陷期,湖盆面积显著扩张且伴随有基地隆起、岩浆底辟、断块旋转及翘倾等一系列活动 [8-9] 。由于构造活动复杂强烈,导致文昌组四段、五段地层厚度差异大,地震特征变化迅速,T84界面整体表现为中振幅中连续地震反射,大范围上超局部被T80界面削截(图3)。
T83为惠州运动产生的区域不整合界面,将文昌组划分为上文昌组与下文昌组。T83界面之上为上文昌组地层,存在明显的被T80界面剥蚀削截的特征,而下文昌组地层上超Tg界面,标志着白云凹陷由断裂活动由强转弱,湖盆面积由扩大转为逐渐减小的转化界面(图3)。研究区W-7井钻遇T83界面,界面之上为上文昌组泥岩,可见代表文昌组的典型孢粉组合,界面之下为厚层砂岩夹泥岩沉积组合,指示近源沉积特征 [4,7,12] 。
T82为文昌组一、二段的底界面,该阶段洼陷的主要断层活动性已大为减弱,白云凹陷整体进入了湖盆收缩期,沉积范围变小,沉积厚度小,以填平补齐为主。在地震上白云主洼文昌组一、二段呈中强振幅低频强连续的特征,而在白云主洼东部高部位的小洼陷中呈现弱振幅高频中差连续的特征。T82界面明显分割了文昌组一、二段和下伏文昌组三段中振幅中频强连续的地层(图3)。
3 沉积相类型及相标志特征
结合前人对白云凹陷的研究 [10-12] 和典型断陷盆地沉积相类型 [17-19] ,对研究区少数测、录井资料分析,通过测井标定地震相特征,在白云凹陷东部文昌组共识别出4种沉积相类型,分别为辫状河三角洲相、扇三角洲相、湖底扇相和湖泊相(图4)。
3.1 测井相特征
根据钻遇文昌组7口井的录井岩性及自然伽马曲线对比分析,总结了研究区的测井相模式,共识别出箱形、钟形、漏斗形、交互指形、平直形等测井相(图4)。
箱形多对应辫状河三角洲平原分流河道微相、扇三角洲平原分流河道微相。辫状河三角洲平原分流河道微相岩性以粗、中砂岩为主,反映了沉积过程中物源丰富、水动力强的特征。辫状河三角洲前缘河口坝微相测井曲线为漏斗形或齿化漏斗形,岩性多为粉砂岩、细砂岩沉积,呈现下部为粉砂岩上部细砂岩的反韵律特征。扇三角洲平原亚相发育分流河道微相,岩性以厚层含砾细、中粗砂岩为主,泥岩段含陆源植物碎屑,多为南部云荔低隆起陡坡带近物源冲积扇直接入湖形成,分选磨圆极差。
齿化钟形测井相对应辫状河三角洲前缘水下分流河道微相,岩性以中、细砂岩为主,反映了辫状河三角洲河道入湖后水流能量逐渐减弱及物源供应逐渐减少。辫状河三角洲外前缘发育席状砂微相,测井曲线为指形,前三角洲主要为泥质沉积,形成典型的“泥包砂”特征。
湖泊相滨浅湖亚相在研究区文昌组大范围发育,半深湖—深湖亚相发育较为局限,且无井钻遇。滨浅湖亚相发育滩坝沉积,岩性多为细砂岩,砂体单层厚度较薄,与泥岩互层,呈“泥包砂”的特征,测井相呈密集的交互指形,整体上为向上自然伽马值逐渐降低的反旋回。滨浅湖和半深湖—深湖亚相主要发育厚层泥岩,为湖底泥微相,测井相为平直形。滨浅湖沉积泥岩相对较薄,含钙质,自然伽马曲线表现为中幅平直形。
3.2 地震相特征
地震相分析包括地震反射单元的内部结构、外部形态、振幅、频率、连续性等地震反射参数。地震相类型与盆缘背景、沉积物供给、基地沉降等因素密切相关,不同类型的地震相可解释为特定的沉积相带 [19-20] 。本次研究在建立研究区三级层序格架的基础上,通过测井岩性标定典型地震相特征,共识别出8种典型地震相类型,并将典型地震相转化为对应沉积相(图5)。
4 三级层序格架下沉积体系分布特征
白云凹陷受控于不同阶段盆地主控断裂伸展活动的差异性,及物源水系、坡折带坡度、岩浆底辟隆起、湖平面升降等活动的影响,文昌组各层段形成了不同的沉积体系类型、沉积组合方式 [9,22-23] 。
4.1 典型剖面解剖
白云凹陷中心部位为单一箕状半地堑,北部番禺低隆起一侧为缓坡带,南部云荔低隆起一侧为陡坡带。南部陡坡带局限发育文昌组六段地层,并下超于Tg界面,北部番禺低隆起和洼陷中心文昌组六段地层缺失(图6,剖面位置见图1)。南部云荔低隆起自WCSQ1至WCSQ2时期均发育扇三角洲沉积,其中WCSQ1时期沉积厚度最大。北部番禺低隆起WCSQ2至WCSQ4时期发育辫状河三角洲沉积,三角洲表现为不断进积,其中WCSQ3时期存在中频中振幅中连续斜交前积地震相。
白云凹陷东部呈现多隆洼相间的格局,存在番禺低隆起、白云东低凸起、云荔低隆起3个正向构造单元,白云东洼及白云主洼2个负向构造单元,各个洼陷均表现为典型的“箕状断陷”,呈“南断北超”的特征。白云主洼发育文昌组各个层序,而白云东洼由于形成较晚及后期构造抬升湖平面下降的影响,缺失WCSQ1和WCSQ2地层(图7,剖面位置见图1)。白云主洼南部陡坡带WCSQ1时期发育楔形杂乱地震相与中频弱振幅低连续斜交前积地震相,WCSQ2时期发育中频中强振幅连续帚状前积地震相,扇三角洲相沉积发育,晚文昌时期扇三角洲沉积萎缩不再发育。白云东低凸起断槽内为中频弱振幅中连续水道充填地震相,早文昌时期下切谷发育,为辫状河三角洲沉积。白云东洼在WCSSQ2和WCSQ3时期由番禺低隆起方向供源发育中频中弱振幅中连续发散前积地震相,为辫状河三角洲相(图7)。
4.2 沉积相平面展布
4.2.1 WCSQ1层序(文昌组六段)
WCSQ1时期在珠琼运动一幕的影响下,白云凹陷开始发育,整体呈复式半地堑结构,多个洼陷受控于高角度正断层,呈NEE向展布,地层表现为“南断北超”的特征,具有多个独立的沉积中心,地层分布范围相对比较局限。WCSQ1时期初始断陷盆地湖泊水深较浅,以滨浅湖相为主,半深湖—深湖亚相发育相对局限。该时期洼陷北部以白云东低凸起为物源区,西侧发育中频中弱振幅中连续发散前积地震相,共有3支近东西向轴向物源的辫状河三角洲沉积,东侧则发育缓坡带短轴物源为主的辫状河三角洲,在白云东低凸起的斜坡区及辫状河三角洲的侧缘零星发育滩坝沉积。南部以云荔低隆起为物源区,南部北倾边界断层控洼,断层活动强烈,断层北侧发育楔形杂乱地震相,为扇三角洲沉积,共发育4个扇三角洲朵体。
4.2.2 WCSQ2层序(文昌组五段)
WCSQ2时期白云凹陷进入拆离裂陷期,南部控洼拆离断层呈现大范围长距离的活动伸展,白云凹陷初步形成统一洼陷,湖盆面积显著扩大,断层上盘出现旋转翘倾现象,沉积中心向北偏移。WCSQ2早期洼陷北部以白云东低凸起为主物源,番禺低隆起为次要物源,由于拆离断层上盘的旋转翘倾作用,轴向物源的辫状河三角洲沉积范围进一步扩大,番禺低隆起缓坡带发育3支辫状河三角洲。WCSQ2早期湖平面相对下降,依然以滨浅湖相沉积为主,但由于拆离断层的断陷加深半深湖—深湖范围扩大,WCSQ2晚期湖平面快速上升,湖相范围迅速增大,三角洲沉积萎缩。该时期洼陷南部云荔低隆起物源依然发育,控沉積断层附近为中频中强振幅连续帚状前积地震相,发育3个较大的扇三角洲,早期由于拆离断层活动影响,加之湖平面相对下降,扇三角洲以进积为主,沉积向北部洼陷中心延伸,沉积过程中下切剥蚀原有文六段地层形成新的物源通道,后期湖平面快速上升以退积加积为主。
4.2.3 WCSQ3层序(文昌组四段)
WCSQ3时期拆离断层继续活动,湖盆面积进一步增大,沉积中心继续北移,地层沉积范围达到最大。相比于文昌组五段物源依旧主要来源于白云东低凸起、云荔低隆起及番禺低隆起方向。但番禺低隆起西北侧三角洲由近源沉积变为峡谷水道长距离搬运沉积,辫状河三角洲规模进一步增大。由于断块旋转翘起的进一步加剧,白云东低凸起南部三角洲物源逐渐萎缩,而北侧供源能力增强,辫状河三角洲沉积范围增大,且WCSQ3末期湖平面迅速下降,导致地层剧烈剥蚀,残留地层厚度较薄。WCSQ3时期断层活动依旧剧烈,坡折带发育,且早期湖泊水体较深,半深湖—深湖亚相范围均有所扩大。研究区南部靠近拆离断层下盘,拆离断层以横向拉伸为主,垂向断距较小,且因早期填平补齐作用,陡坡带坡度变缓,扇三角洲逐渐萎缩而辫状河三角洲发育,物源方向也由早期近南北向转换为北西西向。
4.2.4 WCSQ4层序(文昌组三段)
WCSQ4时期为裂陷I b 幕的开始,拆离断层活动性较裂陷早期大大减弱,湖平面相对上升,沉积、沉降中心远离南部控洼断裂,转移至湖盆中心。物源区较之前无太大变动,番禺低隆起西北侧发育远源辫状河三角洲沉积,沉积范围有所减小,在白云东洼北部番禺低隆起只发育单个辫状河三角洲。白云东洼南部陡坡带发育白云东低凸起供源的连片小型扇三角洲沉积。白云东低凸起西侧的物源萎缩消失,不再发育辫状河三角洲沉积。该时期洼陷中心为高频中弱振幅中连续亚平行席状地震相,对应滨浅湖沉积。南部云荔低隆起供源能力相对减弱,在东部靠近洼陷中心的陡坡带继承性发育辫状河三角洲沉积,西侧继承性发育小型辫状河三角洲,以进积为主,沉积范围有所增大。
4.2.5 WCSQ5层序(文昌组一、二段)
WCSQ5(文昌组一、二段):WCSQ5时期为裂陷I b幕的中晚期,拆离断层几乎停止活动,并且由于构造抬升活动,白云东洼未沉积文昌组一、二段地层,且番禺低隆起、白云东低凸起、云荔低隆起等构造高部位遭受强烈剥蚀,沉积范围迅速萎缩,现今残留地层厚度较薄。沉积厚度中心位于湖盆中央,湖盆边缘由于早期的填平补齐,地形较为平坦,且湖泊水体较浅,为滨浅湖沉积环境,多发育四周向湖盆中央供源的浅水辫状河三角洲,三角洲的沉积范围较小,在湖盆北侧发育连片的浅水辫状河三角洲沉积,在湖盆南侧发育一个相对较小的浅水辫状河三角洲,呈连片分布。
5 沉积充填演化特征
5.1 初始裂陷期(Tg—T85)
初始裂陷期发育WCSQ1(文昌组六段)地层,该时期湖盆初始形成,呈复式箕状半地堑构造形态,沉积地层呈现“南断北超”的特征。南部云荔低隆起地区控洼拆离断裂活动较强,高程落差大,主要发育陡坡近源扇三角洲—半深湖沉积体系。北部白云东低凸起南侧为缓坡为主的构造带,主要发育辫状河三角洲—滨浅湖沉积体系。白云东低凸起西侧同期发育两条近东西向的小型控洼正断层,形成两个小型箕状半地堑,发育轴向物源为主的辫状河三角 洲— 滨浅湖沉积。该时期辫状河三角洲以轴向物源为主,缓坡物源不发育,三角洲为近源快速堆砌加积,地层厚度大而平面展布面积小。WCSQ1时期,火山活动较为频繁,在白云东低凸起W-2井钻遇厚层凝灰岩,南部云荔低隆起W-6井钻遇灰质砂岩,文昌组六段地层受火山喷发物的影响较大,其砂岩储层物性较差。
5.2 拆离裂陷早期(T85—T83)
拆离裂陷早期发育WCSQ2(文昌组五段)、WCSQ3(文昌组四段)两套地层。该时期南部控洼断层由早期的高角度正断层转变为低角度拆离断层,控洼断层活动速率迅速增大,白云凹陷湖盆范围迅速扩大,拆离断层水平伸展距离由西向东逐渐减小,使白云主洼呈“喇叭口”形向西张开,拆离活动过程中在南部陡坡带形成断阶带,在伸展过程中文昌组六段地层遭到拉张破坏。白云东低凸起两条小型控洼断层活动速率较小,在北部形成新的高角度正断层,白云东洼开始形成,并在WCSQ3时期扩展到最大。南部云荔低隆起控洼断层北移,造成沉积中心不断的向北迁移。在WCSQ2早期湖泊古水深减小,初始拆离使湖盆面积扩大,可容空间增大,地层以持续进积为主,南部云荔低隆起发育的扇三角洲沉积与白云东低凸起西侧辫状河三角洲沉积范围均有所扩大。WCSQ2晚期湖泊古水深迅速增大,三角洲以退积为主,湖泊相沉积范围迅速扩大,并上超于原有三角洲沉积地层之上,该时期白云主洼与白云东洼均有较大范围的半深湖—深湖沉积,W-3井钻遇文五段顶部可见大套泥岩。WCSQ3时期湖泊古水深有所回落,整个白云凹陷东部以滨浅湖亚相为主,呈现“广盆浅湖”的特征,南部云荔低隆起的扇三角洲逐渐萎缩,只有云荔低隆起西部靠近洼陷中心区域,坡折带坡度依然较大,继续发育扇三角洲相。白云东低凸起位于拆离断层的上盘,在拆离断层活动过程中发生强烈掀斜旋转,白云东低凸起南部缓坡带位于断块的倾没端,辫状河三角洲逐渐萎缩,白云东低凸起的西侧为断块掀斜旋转的翘倾段,坡折带顶部湖泊水深变浅,发育浅水辫状河三角洲,地层厚度较薄。伴随湖盆的快速扩张,湖盆边缘到达番禺低隆起,在WCSQ2番禺低隆起缓坡带发育一定规模的辫状河三角洲—滨浅湖沉积体系,三角洲主要为近源短程沉积,WCSQ3时期随着湖盆范围的扩大,三角洲朵体进一步向湖盆中心推进,以大型辫状河三角洲沉积为主,其沉积物也变为较长距离物源经峡谷水道搬运而至。
5.3 拆离裂陷晚期(T83—T80)
拆离裂陷晚期发育WCSQ4(文昌组三段)、WCSQ5(文昌组一、二段)两套层序。该时期拆离断层活动性明显减弱,沉积中心远离控洼断层并稳定于湖盆中心位置。WCSQ4时期湖平面略有上升但湖盆整体仍表现为“广盆浅湖”的特征。北部番禺低隆起在白云主洼继承性发育大型三角洲,沉积范围略有扩大,白云东洼番禺低隆起缓坡带发育辫状河三角洲—滨浅湖沉积体系。白云东低凸起西侧轴向物源的辫状河三角洲沉积体系萎缩消失,白云东低凸起主要向北侧白云东洼供源。南部云荔低隆起由于拆离断层下切加深作用减弱与填平补齐作用双重影响,陡坡带坡度变缓,扇三角洲强烈萎缩,转而发育小型辫状河三角洲。WCSQ5时期,拆离断层活动速率几乎为零,且受珠琼运动Ⅱ幕的影响盆地四周番禺低隆起、白云东低凸起、云荔低隆起等构造高部位,受岩浆底侵进一步隆升,白云东洼消亡未沉积文昌组一、二段地层,白云主洼文昌组一、二段地层呈现湖盆四周薄中央厚的碟型特征,且湖盆周緣地层被大量剥蚀。该时期湖泊古水深进一步变浅,发育浅湖、滨浅湖,湖盆四周主要发育番禺低隆起、白云东低凸起、云荔低隆起等构造高部位供源的浅水辫状河三角洲—滨浅湖沉积体系,三角洲沉积范围均较小,不再发育扇三角洲沉积体系,各个物源区均存在不同程度的物源萎缩。
6 结 论
(1)在地质、测井和地震资料分析的基础上,建立了新的白云凹陷古近系文昌组三级层序地层划分方案,文昌组共识别出2个二级层序界面(T80、Tg),1个准二级层序界面(T83)、3个三级层序界面(T82、T84、T85),将文昌组划分为WCSQ1—WCSQ5共5个三级层序,其中WCSQ1对应白云凹陷初始裂陷期,WCSQ2、WCSQ3对应拆离裂陷早期,WCSQ4、WCSQ5对应拆离裂陷晚期。
(2)白云凹陷东部古近系文昌组存在番禺低隆起、白云东低凸起、云荔低隆起3个物源区。白云主洼北坡发育大型辫状河三角洲—滨浅湖沉积体系,白云东洼发育小型辫状河三角洲—滨浅湖沉积体系。白云东低凸起西侧继承性发育3个辫状河三角洲—滨浅湖沉积体系,白云东低凸起北侧以小型扇三角洲—半深湖沉积体系为主,南部缓坡带以小型辫状河三角洲—滨浅湖沉积体系为主。云荔低隆起陡坡带早文昌期发育厚层扇三角洲—半深湖沉积体系,晚文昌期发育小型辫状河三角洲—滨浅湖沉积体系。
(3)白云凹陷东部不同沉积时期沉积体系的空间展布和配置明显不同。初始裂陷期文昌组六段地层呈现典型“南断北超”的箕状半地堑特征,湖盆整体呈现“小盆浅湖”的特征。拆离裂陷早期边界控洼断层活动性增强,湖盆面积迅速增大,沉积中心北移,湖盆整体呈现“广盆浅湖局部半深湖—深湖”的特征。拆离裂陷晚期边界控洼断层活动性减弱直至不活动,沉积中心逐渐稳定于湖盆中央,湖泊古水深不断变浅,整体呈现“广盆浅湖”的特征。
参考文献 :
[1] 刘志峰,王升兰,印斌浩,等.珠江口盆地珠Ⅰ、珠Ⅲ坳陷裂陷期湖相分布差异及其控制因素[J].石油实验地质,2013,35(5):523-527,533.
LIU Zhifeng, WANG Shenglan, YIN Binhao, et al. Distribution difference and controlling factors of lacustrine facies during the rifting period of Zhu I and Zhu III depressions in the Pearl River Mouth Basin[J].Petroleum Experimental Geology, 2013,35(5):523-527,533.
[2] 施和生,柳保军,颜承志,等.珠江口盆地白云-荔湾深水区油气成藏条件与勘探潜力[J].中国海上油气,2010,22(6):369-374.
SHI Hesheng, LIU Baojun, YAN Chengzhi, et al. Hydrocarbon accumulation conditions and exploration potential in Baiyun-Liwan deep-water area Perl River Mouth Basin[J]. China Offshore Oil and Gas, 2010,22(6):369-374.
[3] 赵阳慧.南海北部陆缘白云凹陷盆地构型及其形成演化机制[D].武汉:中国地质大学(武汉),2016.
ZHAO Yanghui. Basin architecture and its evolution mechanism of Baiyun Sag, northern margin of the South China Sea (Doctoral dissertation) [D]. Wuhan : China University of Geosciences (Wuhan) ,2016.
[4] 郭伟,徐国强,陈兆明,等.珠江口盆地白云主洼古近系文昌组沉积充填特征及演化[J].古地理学报,2022,24(1):112-128.
GUO Wei, XU Guoqiang, CHEN Zhaoming, et al. Sedimentary filling characteristics and evolution of the Paleogene Wenchang Formation in Baiyun Main Sag, Pearl River Mouth Basin[J]. Journal of Paleogeography(Chinese Edition), 2022,24(1):112-128.
[5] 庞雄,任建业,郑金云,等.陆缘地壳强烈拆离薄化作用下的油气地质特征:以南海北部陆缘深水区白云凹陷为例[J].石油勘探與开发,2018,45(1):27-39.
PANG Xiong,REN Jianye, ZHENG Jinyun, et al. Petroleum geology controlled by extensive detachment thinning of continental margin crust: a case study of Baiyun sag in the deep-water area of northern South China Sea[J]. Petroleum Exploration and Development,2018,45(1):27-39.
[6] WANG J H, PANG X, LIU B J, et al. The Baiyun and Liwan Sags: two supradetachment basins on the passive continental margin of the northern South China Sea[J]. Marine and Petroleum Geology, 2018,95:206-218.
[7] 柳保军,庞雄,王家豪,等.珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义[J].石油学报,2019,40(增1):124-138.
LIU Baojun, PANG Xiong, WANG Jiahao, et al. Sedimentary system response process and hydrocarbon exploration significance of crust thinning zone at extensional continental margin of deep-water area in Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019,40(sup1):124-138.
[8] 庞雄,郑金云,任建业,等.南海北部陆缘超伸展区白云凹陷断陷结构演化与岩浆作用[J].地球科学,2022,47(7):2303-2316.
PANG Xiong, ZHENG Jinyun, REN Jianye, et al. Structural evolution and magmatism of fault depression in Baiyun Sag in the hyperextension area of the northern continental margin of the South China Sea[J]. Earth Science, 2022,47(7):2303-2316.
[9] 柳保军,庞雄,谢世文,等.珠江口盆地白云凹陷壳幔拆离断裂活动对深层大型三角洲沉积体系的控制作用[J].地球科学,2022,47(7):2354-2373.
LIU Baojun, PANG Xiong, XIE Shiwen, et al. Thecontrol effect of crust-mantle detachment fault activity on deep large delta sedimentary system in Baiyun Sag, Pearl River Mouth Basin[J]. Earth Science, 2022,47(7):2354-2373.
[10] 施和生,高阳东,刘军,等.珠江口盆地惠州26洼“源-汇-聚”特征与惠州26-6大油气田发现启示[J].石油与天然气地质,2022,43(4):777-791.
SHI Hesheng, GAO Yangdong, LIU Jun, et al. Characteristics of hydrocarbon source-migration-accumulation in Huizhou 26 Sag and implications of the major Huizhou 26-6 discovery in Pearl River Mouth Basin[J].Oil & Gas Geology,2022,43(4):777-791.
[11] 李成海,王家豪,柳保军,等.珠江口盆地白云凹陷古近系沉积相类型[J].沉积学报,2014,32(6):1162-1170.
LI Chenghai, WANG Jiahao, LIU Baojun, et al. Types and distribution of the Paleogene sedimentary facies in Baiyun Depression of Pearl River Mouth Basin[J]. Acta Sedimentologica Sinca, 2014,32(6):1162-1170.
[12] 郭伟,徐国强,柳保军,等.珠江口盆地白云凹陷文昌组构造-沉积响应关系[J].地球科学,2022,47(7):2433-2453.
GUO Wei, XU Guoqiang, LIU Baojun, et al. Structural-sedimentary response relationship of Wenchang Formation in Baiyun Sag, Pearl River Mouth Basin[J]. Earth Science, 2022,47(7):2433-2453.
[13] 张向涛,史玉玲,刘杰,等.珠江口盆地惠州凹陷古近系文昌組优质湖相烃源岩生烃动力学[J].石油与天然气地质,2022,43(5):1249-1258.
ZHANG Xiangtao, SHI Yuling, LIU Jie, et al. Kinetics of high-quality lacustrine source rocks of Paleogene Wenchang Formation, Huizhou Sag, Pearl River Mouth Basin[J]. Oil & Gas Geology,2022,43(5):1249-1258.
[14] 米立军,张向涛,庞雄,等.珠江口盆地形成机制与油气地质[J].石油学报,2019,40(增1):1-10.
MI Lijun, ZHANG Xiangtao, PANG Xiong, et al.Formation mechanism and petroleum geology of Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019,40(sup1):1-10.
[15] 涂乙,闫正和,戴建文,等.中国南海珠江口盆地西江油田运聚再生油藏模式创新认识与挖潜效果[J].石油与天然气地质,2021,42(2):522-532.
TU Yi, YAN Zhenghe, DAI Jianwen, et al. New understanding and tapping effect of remaining oil reservoirs in Xijiang Oilfield, PRBM, South China Sea[J].Oil & Gas Geology,2021,42(2):522-532.
[16] ZHU W L, CUI Y C, SHAO L, et al. Reinterpretation of the northern South China Sea pre-Cenozoic basement and geodynamic implications of the South China continent: constraints from combined geological and geophysical records[J]. Acta Oceanologica Sinica, 2021,40(2):12-28.
[17] 賈浪波,纪友亮,钟大康,等.珠江口盆地L凹陷裂陷期始新统文昌组沉积充填模式[J].古地理学报,2017,19(3):525-540.
JIA Langbo, JI Youliang, ZHONG Dakang, et al. Depositional filling model of the Eocene Wenchang Formation in rift stage of L sag, Pearl River Mouth Basin[J]. Journal of Palaeogeography (Chinese Edition), 2017,19(3):525-540.
[18] 吴宇翔,柳保军,丁琳,等.珠江口盆地西江凹陷南部文昌组层序地层及沉积体系研究[J].海洋地质与第四纪地质,2022,42(1):146-158.
WU Yuxiang, LIU Baojun, DING Lin, et al. Study onsequence stratigraphy and sedimentary system of Wenchang Formation in southern Xijiang Sag, Pearl River Mouth Basin[J]. Marine Geology and Quaternary Geology, 2022,42(1):146-158.
[19] 杨保良,邱隆伟,杨勇强,等.利津洼陷北部陡坡带水下扇搬运机制及发育规律[J].中国石油大学学报(自然科学版),2022,46(2):25-37.
YANG Baoliang, QIU Longwei, YANG Yongqiang, et al. Transport mechanism and development law of subsea fans in the northern steep slope zone of Lijin Subsag[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022,46(2):25-37.
[20] XU G Q, HAQ B U. Seismic facies analysis: past,present and future[J]. Earth-Scicence Reviews,2021,224:103876.
[21] 戴宗,张青青,衡立群,等.珠江口盆地番禺4洼珠江组层序地层及其约束下砂体发育模式[J].中国石油大学学报(自然科学版),2021,45(1):12-22.
DAI Zong, ZHANG Qingqing, HENG Liqun, et al. Sequence stratigraphy of Zhujiang Formation in Panyu 4 sag, Pearl River Mouth Basin and its development model of sand bodies under constraints [J]. Journal of China University of Petroleum (Edition of Natural Science), 2021,45(1):12-22.
[22] 秦国省,吴胜和,宋新民,等.远源细粒辫状河三角洲沉积特征与单砂体构型分析[J].中国石油大学学报(自然科学版),2017,41(6):9-19.
QIN Guosheng, WU Shenghe, SONG Xinmin, et al. Sedimentary characteristics and single sand body architecture analysis of remote fine-grained braided river delta[J]. Journal of China University of Petroleum(Edition of Natural Science), 2017,41(6):9-19.
[23] ZHOU Y, JI Y L, JOHN D P, et al. Tectono-stratigraphy of Lower Cretaceous Tanan sub-basin Tamtsag Basin, Mongolia: sequence architecture, depositional systems and controls on sediment infill[J]. Marine and Petroleum Geology, 2014,49:176-202.
(编辑 修荣荣)