APP下载

时滞动力学与控制研究进展*

2023-12-30严尧张丽陈龙祥

动力学与控制学报 2023年8期
关键词:时滞神经元动力学

严尧 张丽 陈龙祥

(1. 电子科技大学 航空航天学院,成都 611731)

(2. 南京航空航天大学 航空学院,南京 210016)

(3. 上海交通大学 船舶海洋与建筑工程学院,上海 200240)

引言

从动物种群演化到人体平衡,从计算机网络到车辆道路交通,从金属切削到机械臂控制,时滞效应无处不在,对自然、社会、工程等动力系统的演化发展产生了广泛而深刻的影响.针对这些系统的早期研究常常在忽略、近似、补偿的基础上套用经典的动力系统分析和控制方法,然而时滞系统具有无穷维解空间,与常微分系统有本质的不同.近20年来,以时滞为中心的动力学与控制研究取得了长足的发展和丰硕的成果,人们陆续揭示了时滞效应对Covid-19的传播与防治、神经元活动和大脑疾病、计算机网络和道路拥塞、再生加工颤振和机器人运动误差的决定性影响.与此同时,许多学者还在积极开发时滞效应的应用,主动引入时滞控制实现宽频隔振、分岔和混沌控制、网络拥塞调控等.然而,时滞动力学与控制的研究依然面临诸多困难,例如系统的固有时滞辨识没有可借鉴的方法,多时滞高维系统的稳定性分析和高余维分岔研究非常困难,时滞反馈设计没有统一的理论框架,时滞多稳态分析不能基于经典的吸引盆定义等.

为了及时总结各类时滞系统中的动力学与控制研究最新成果,我们特在《动力学与控制学报》组织了“时滞动力学与控制”专刊,旨在征集和汇报时滞动力学与控制在相关领域的创新性研究和工程应用成果,获得了国内学者的积极响应.然而,由于期刊对于篇幅的限制,本次专刊只能汇总其中的一部分成果,期望将来有更多的成果在《动力学与控制学报》上不断发表,促进时滞动力学与控制的发展.

总体而言,本次特刊包括综述论文1篇,由孙中奎和金晨[1]总结了时滞系统非线性动力学的发展,其余论文大体上可归纳为神经系统时滞动力学2篇,时滞网络动力学2篇,机械与控制系统中的时滞动力学3篇,以及时滞减振4篇(包括能量采集1篇).

1 神经系统时滞动力学

神经元动力学一直是脑科学、人工智能等领域的研究热点,虽然单个神经元不具有智能,但研究表明多个神经元构成的神经系统中的群体同步和去同步等复杂放电行为通常与神经系统正常和病态功能密切相关[2].目前已知的神经元同步包括多种状态,如完全同步(complete synchronization)、滞后同步(lag synchronization),广义同步(generalized synchronization)等[3]. 此外,由于信号传输速度的有限性和神经递质释放的滞后,神经系统中信息的传递通常不是瞬时的,即在神经网络中普遍存在信息传递的时间滞后,并且时滞可以诱发多种不同的同步放电模式,为此有很多学者对具有时滞的神经系统动力学展开了大量研究[4].袁韦欣等[5]将两个单向耦合的 FitzHugh-Nagumo神经元之间的滞后同步视为一种特殊的广义同步,并通过辅助系统方法来获得滞后同步发生的条件.关利南等[6]研究了含时滞和Ih流的抑制耦合水蛭神经元系统的同步簇放电活动,发现合适的时滞和耦合强度都可以产生神经元的多种同步放电模式,并通过快慢变分析发现快子系统的鞍结分岔点和鞍同宿轨分岔点之间的参数范围会随着Ih流电导的增大而缩小,从而使得簇内峰数减少,诱导多种同步放电模式.

2 具有时滞的人工网络

除了生命智能所具有的自然神经网络,各种人造网络在近些年也获得了蓬勃的发展,特别是在人工智能领域取得了革命性的突破. 卷积神经网络[7]、循环神经网络[8]和对抗生成网络[9],分别在图像识别精度,时序的自然语言处理和虚拟图像生成领域取得了显著的成就.其中广泛用于时序数据处理的循环神经网络具有典型的时间滞后特征,其采用历史记忆和当前输入可对未来时序进行有效预测. 徐一宸和刘建明[10]在一类特殊的循环神经网络,回声状态神经网络中,引入注意力机制以体现样本之间的差异与交互,可以有效地实现对混沌系统的时序预测,有望应用在通讯加密解密等方面.

另一类典型的具有时滞的人工网络是多智能体系统,其中的分布式同步和一致性控制是动力学与控制等诸多领域的热点课题[11].这之中的Euler-Lagrange(EL)系统的合作行为与协调控制备受关注,这是因为它可以描述包括机械臂、无人车辆和航天器等诸多智能体,在大规模集成化生产过程中,具有独特的灵活性、并行性、可操作性和可拓展性.郑斌等[12]在研究一类具有通讯时滞的网络化欠驱动EL系统的一致性问题时,提出一致性能量整形方案,有机地整合了系统欠驱动和驱动部分以及控制器三部分能量,并构造相应的Lyapunov函数,充分确保网络化欠驱动 EL系统达到所期望的分布式一致性.

3 具有时滞的机械与控制系统

时间滞后以再生效应的形式广泛存在于各类机械加工动力学中.以单刀刃车削为例,刀刃划过工件表面留下的切痕会影响下一轮切削时刀刃切入工件的深度,使得切削深度和切削力与前一个旋转周期时的状态相关,由此工件表面再生引入的时滞被称为再生时滞,对切削稳定性具有决定性的作用.在此基础上,多刀刃的钻削和铣削会导致多时滞效应,而磨削中砂轮的表面再生则会导致双时滞效应.针对多刀刃钻削问题,侯祥雨等[13]建立了4自由度钻杆动力学模型,考虑钻头跳动现象引起的多重时滞问题,基于半离散法得到了系统的稳定性判据,并通过优化的顶部柔顺边界实现了振动抑制,为钻柱纵扭耦合振动的抑制提供一种简单有效的思路.

小车倒立摆系统是一类经典的控制对象,主要包括起摆控制和稳摆控制两种,起摆控制通常使用基于能量的控制律,稳摆控制可采用经典的 PID 控制[14]. 冯欣炜等[15]同时考虑了回路中的时滞对于起摆和稳摆控制的影响,基于Lyapunov函数证明了时滞可以优化非线性起摆控制阶段的能量输入,同时采用定积分法分析了稳摆控制的稳定性,发现时滞先是增强稳摆稳定性,但时滞的进一步增大会弱化稳定性并导致系统失稳.

无人驾驶是智能车辆的重要发展方向,其中的最优经济性驾驶策略已成为重要的课题之一.刘灿昌和孙亮[16]以无人驾驶汽车整车控制问题为研究对象,基于车辆智能网思想,用负时滞体现对未来路况的预判,建立车辆坡道行驶的预见性驾驶动力学模型,分析了加速控制参数与坡道高度关系规律,发现合适的控制参数和时滞可以有效设计冲坡、下坡速度,降低油耗.

4 时滞减振

为了抑制结构在外载荷作用下的振动,人们提出了多种控制方法,近些年非线性动力吸振器与时滞主动控制的方案受到了大家的关注,非线性可以拓宽吸振器带宽,而时滞反馈可以提升控制效果以适应复杂工况[17].针对建筑结构的减振问题,管明杰等[18]提出一种含时滞的非线性轨道动力吸振器,通过谐波平衡法得到了系统的频响曲线,发现被动控制时的非线性具有软弹簧特性,而时滞反馈可以消除这种特性并降低共振幅值,从而有效改善振动抑制效果.张国荣等[19]研究了时滞反馈PD控制对于电磁轴承系统的减振效果,发现合适的时滞会使得轴承在面内的振动相较于无时滞状态明显减小,还可以消除多稳态、突跳等非线性现象.这一特征也正是能量采集这一当下的研究热点所关心的对象,即采用非线性多稳态可以提升带宽,采用时滞反馈可以调节振动系统的分岔特征,从而使得能量采集器可以从振动主系统中提取更多的机械能转化为电能. 孙成佳等[20]设计了一套具有时滞反馈控制的双稳态压电-电磁式俘能器,将随机的振动能量转化为电能,发现通过联合位移和速度的反馈时滞特性有利于取得更好的能量采集效率.

此外,魏梦可和韩修静[21]还讨论了一类广义上的“时滞”问题,即由慢变参数导致的分岔延迟问题,这是吸引子的一种延迟失稳现象,即当吸引子失稳变成排斥子时,系统的轨线继续在排斥子上停留一段时间,然后再离开排斥子的现象.这种延迟效应已经成为可以诱发簇发振荡的有效机制之一.他们发现簇发振荡的延迟与初始时间无关,而取决于系统的参数.

5 结语

时滞动力学与控制的应用范围非常广泛,涉及生命、神经系统、网络、人工智能、机械、控制、交通等众多领域,深刻影响着自然、社会、工程的演化发展.限于篇幅,此次专刊仅仅刊登了时滞动力学与控制在神经系统动力学、网络动力学、机械与控制、减振和能量采集领域的应用.本文也同样只简单地讨论了相关领域的进展.

除了本文涉及的范畴,时滞动力学与控制的发展还在帮助我们解决疾病传播、计算机网络和交通网络拥塞、机器人本体和集群控制等众多领域的难题.除了应用,时滞系统的理论基础也有待进一步发展,其具有独特的无穷维状态空间,分析和计算的理论难度都很大,而时滞与非光滑和多稳态问题的耦合会进一步加剧问题的分析难度,乃至没有合适的计算方法或工具,因此,时滞动力学与控制的理论发展更是至关重要.

猜你喜欢

时滞神经元动力学
《空气动力学学报》征稿简则
《从光子到神经元》书评
带有时滞项的复Ginzburg-Landau方程的拉回吸引子
跃动的神经元——波兰Brain Embassy联合办公
基于二次型单神经元PID的MPPT控制
基于随机-动力学模型的非均匀推移质扩散
毫米波导引头预定回路改进单神经元控制
一阶非线性时滞微分方程正周期解的存在性
一类时滞Duffing微分方程同宿解的存在性
TNAE的合成和热分解动力学