高倍率脉冲放电锂电池的功率输出特性
2023-12-08焦绍光柳应全鲁军勇
焦绍光,柳应全,鲁军勇
(1. 海军工程大学 教研保障中心, 湖北 武汉 430033; 2. 海军工程大学 电磁能技术全国重点实验室, 湖北 武汉 430033)
锂电池系统的功率性能评估正在成为先进电池管理系统中的关键技术之一[1-3]。功率性能是指电池系统输入或输出功率的能力,是决定整个能量系统安全性、可靠性和效率的主要因素。在电磁发射等超大功率应用场合,电池系统输出功率短缺不仅会延长能量传输时间、降低连发效率,严重时还可能导致任务失败甚至产生安全隐患或事故。因此,进行功率性能分析是电磁发射用锂电池系统电池管理中必须解决的问题。
功率特性是评价动力电池性能的一项重要指标,直接反映着电池接受电流和提供电流的能力。因此,对锂离子动力电池的功率特性进行定量定性的研究是掌握动力电池性能、科学管理动力电池的必备环节。目前,国外的动力电池功率测试标准有USABC[4]提出的联邦城市驾驶工况(federal urban driving schedule,FUDS)测试、动态应力测试(dynamic stress test,DST)和INEEL[5]提出的混合脉冲功率特性(hybrid pulse power characterization,HPPC)测试;国内有孙逢春等[6]提出的北京客车动态应力测试(Beijing bus dynamic stress test,BBDST)等。大体可以概括为控制功率脉冲和控制电流脉冲两种模式。其中,FUDS测试、DST和BBDST属于控制功率脉冲模式,HPPC测试属于控制电流脉冲模式。针对两种测试模式的应用主要基于不同电池的实验研究进行。文献[7]对常见电化学储能器件在两种测试模式下的性能差异进行对比,认为超级电容器和磷酸铁锂电池在两种测试模式下的性能相近。文献[8]综合分析了恒流和恒功率测试模式下磷酸铁锂电池的性能和工作特性,认为恒功率模式下由于电池不能充满电,倍率性能稍差。文献[9]认为应用HPPC测试法评价能量型锂离子动力电池的功率特性规律一致,且HPPC测试法所得的功率与脉冲时间及电流有关,脉冲时间越短、脉冲电流越大,相应的功率越大。
以上研究均是对动力电池的功率测试标准进行对比分析,未涉及对动力电池功率特性的影响因素的定性研究。由于应用背景的特殊性,对高倍率脉冲放电锂电池的研究更是罕见。在单个实验中固定电流条件可以排除由于电流波动对实验结果产生的影响,且相比恒功率控制,恒电流控制更能突显测试条件对输出功率的影响。因此,本文主要采用恒电流脉冲控制的测试方法分析高倍率锂离子动力电池的功率特性。阻抗是影响动力电池功率性能的决定性因素,而温度、荷电状态(state of charge, SOC)和老化被认为是导致电池阻抗变化的诱因[10-11],因此,本文设计了温度、SOC和老化3组实验进行定量的研究。其中,温度实验是基于同一种电池在不同温度下的放电实验,SOC实验是基于两型不同体系电池在各自额定功率附近的放电实验,老化实验是基于同一支电池在寿命周期内的放电实验。为了更直观地表征输出功率的变化规律,本文采用相对功率-SOC曲线作为评估输出功率性能的指标,通过定量分析与实验结合的方式研究了温度、SOC和老化3个因素对电池输出功率特性的影响。
1 锂电池的功率特性曲线
锂电池的功率特性可以通过V-I曲线描述,如图1(a)所示。4条红色虚线分别表示工作电流和电压的上下边界,蓝线表示动力电池的工作曲线,工作点可在蓝线和红虚线包围的灰色区域内移动。为了方便讨论,定义电池的放电电流和功率为正方向,充电电流和功率为负方向。
动力电池的功率P可表示为:
P=UOCVI-I2Rtotal
(1)
式中,UOCV表示电池开路电压,I表示电池工作电流,Rtotal表示电池直流阻抗,可得如图1(b)所示P-I曲线。为求解P的最大值,可对电流I求偏导,同时考虑Rtotal=R(I),可得:
(2)
式中,R′(I)表示Rtotal对I的一阶导数。令式(2)为0,可求得峰值功率和峰值功率对应的电流值。通常锂离子动力电池的实际工作电流无法达到IPmax,图1(b)中的P′max为理论峰值功率,因此,实际的电池峰值功率为最大电流对应的工作点。
(a) V-I曲线(a) V-I curve
(b) P-I曲线(b) P-I curve图1 锂电池的V-I曲线和P-I曲线Fig.1 V-I curve and P-I curve of the lithium power battery
2 锂电池输出功率的影响因素
本节主要分析温度、SOC和电池老化3个因素对电池输出功率的影响。
2.1 温度
电池的功率特性对温度有较高的依赖性,这是由于温度会影响锂离子的活度和电荷传输能力[12]。此外,温度产生的熵变还会对动力电池的OCV特性产生影响,并间接影响电池的功率。温度对电池功率的影响如图2所示。
2.2 SOC
锂电池的电气参数在SOC区间呈现波动,其中,欧姆内阻RΩ大体呈两端高中间低的马鞍形分布,电气参数的变化必然会引起输出电压的变化,从而体现在输出功率上。然而,SOC对电池功率的影响最主要体现在开路电压的单调变化。随着SOC的下降,开路电压减小,尤其是在SOC的低区间,如图3所示。
图2 温度对锂电池工作曲线的影响Fig.2 Influence of temperature on the lithium battery work curve
图3 SOC对锂电池工作曲线的影响Fig.3 Influence of SOC on the lithium battery work curve
2.3 电池老化
锂离子电池的性能随着时间(日历老化)和使用(循环寿命)而下降[13-14],这是由发生在电极/电解质界面和活性材料中的大量反应过程引起的。当电池达到寿命终点时,电池内阻大幅上升,且伴随着容量和功率的衰减,带来工作过程中欧姆热的增加和能量效率的下降。此外,电极材料的流失还会引起电极电势的下滑,加剧输出功率的衰减[15]。对纯电动汽车而言,功率衰减会引起加速和制动阶段驾驶性能的恶化[16],Saxena等指出,电池老化会带来纯电动汽车加速时间的延长,尤其是在SOC较低时[17]。老化对电池功率的影响如图4所示。
图4 老化对锂电池工作曲线的影响Fig.4 Influence of aging on the lithium battery work curve
3 实验设置和结果
搭建高倍率单体电池测试平台,平台架构和拓扑结构如图5所示。实验的温控条件和测试对象如图6所示。
图6 温控条件和测试对象Fig.6 Temperature control condition and test battery
4 实验结果和分析讨论
4.1 温度实验
为研究温度对锂电池功率输出特性的影响,设计一组10%、30%和50%SOC电池在不同温度(15 ℃、25 ℃、30 ℃)下的脉冲放电实验,实验对象为9支高倍率LiFePO4/C电池,容量20 Ah。实验步骤如下:
步骤1:电池1 C充满电至3.65 V,分3组(每组3支)。
步骤2:1 C恒流放电,截止条件实际容量10%SOC(30%SOC和50%SOC)。
步骤3:以15 ℃为例,15 ℃静置8 h,记录静置电压(连接充放电机)。
步骤4:400 A恒流放电4 s,停1 s,循环脉冲直至截止电压2.0 V,数据采集周期0.1 s(放电倍率20 C)。
步骤5:在20/25 ℃下重复步骤3~4。
实验得到9支电芯的电池电压和电流曲线,将二者的乘积作为输出功率曲线,并折算成峰值功率(Ppeak)的倍数,如图7所示。
从图7可以看出:①当SOC低于10%时,电池功率对温度十分敏感;②当SOC高于30%时,25 ℃条件下的电池功率明显高于15 ℃和20 ℃。因此,在冬季为提高电池的输出功率和能量效率,应通过加热使电池温度至少达到25 ℃。不同SOC条件下,电池平均输出功率曲线如图8所示。
(a) 10%SOC
(b) 30%SOC
(c) 50%SOC图7 温度和SOC对锂电池功率-SOC曲线的影响Fig.7 Influence of temperature and SOC on the lithium battery power-SOC curve
图8 温度和SOC对动力电池平均功率的影响Fig.8 Influence of temperature and SOC on the average power of power battery
从图8可以看出:①SOC处于50%条件下,平均标幺功率与温度的关系满足Arrhenius关系式,即近似呈线性关系;②SOC处于30%条件下,15 ℃和20 ℃工作温度时平均功率相当,即电池功率对温度的依赖性较小;③SOC处于10%条件下,15 ℃工作温度时,电池功率对SOC更敏感,由于SOC的不足使得平均功率的衰减增加了50%。因此,高倍率动力电池应避免深度放电,尽量保证电池的工作SOC在20%以上。
4.2 SOC实验
对两种锂离子动力电池(A型Li(Ni1-x-yCoxMny)O2/ LixC6和B型LiFePO4/C)进行恒电流脉冲控制,室温条件下测试倍率分别为0.5 C和22 C,实验步骤如下:
步骤1:25 ℃下电池1 C充至满电状态(A型4.2 V截止,B型3.65 V截止)。
步骤2:25 ℃静置8 h,记录静置电压(连接充放电机)。
步骤3:A型电池1 A恒流放电1 200 s,停600 s,循环脉冲直至截止电压3.0 V,数据采集周期1 s(放电倍率0.5 C)。
步骤4:B型电池400 A恒流放电4 s,停1 s,循环脉冲直至截止电压2.0 V,数据采集周期0.1 s(放电倍率22 C)。
实验得到一个循环周期内的电池电压和电流曲线,将二者的乘积作为输出功率曲线,并折算成峰值功率(Ppeak)的倍数,如图9所示。
(a) 三元聚合物电池的脉冲功率输出(a) Pulse power output of ternary polymer cell
(b) 高倍率LFP电池的脉冲功率输出(b) Pulse power output of high-rate LFP battery图9 两种锂离子动力电池的功率-SOC曲线Fig.9 Power-SOC curve of two types lithium-ion power battery
可以看出,由于脉冲放电特性,输出功率在每个脉冲的上升沿会出现一个抬升,并在数秒内沿指数衰减到稳定值,称脉冲上升沿的瞬时功率为启动功率Pign,稳定下来的工作功率为持续功率Pcon,如图10(a)所示。分别对磷酸铁锂(LiFePO4, LFP)电池高倍率放电过程中启动功率和持续功率曲线进行多项式拟合可以得到:
(3)
启动功率和持续功率的拟合结果如图10(b)所示。从图10(b)可以看出,拟合多项式可以很好地描述启动功率和持续功率的特性。利用该拟合公式可以对负载的功率耐受能力进行前期评估,防止出现由能源功率波动引起的性能下降。
(a) 脉冲放电锂电池的输出功率、启动功率和持续功率(a) Output power, ignition power, continue power of pulse-discharged lithium battery
(b) 启动功率和持续功率的拟合结果(b) Polynominal fitting results of the ignition power and the continue power图10 启动功率和持续功率及多项式拟合结果Fig.10 Ignition power, continue power and polynominal fitting results
4.3 电池老化实验
在Bole等提供的开放数据集[18]中,一组18650电芯在室温下随机脉冲放电循环,每间隔50个大循环在满电情况下进行一次脉冲放电测试,实验进行600个大循环,将脉冲放电过程中得到的电压和电流的乘积作为输出功率曲线,并折算成峰值功率(Ppeak)的倍数,如图11所示。
(a) SOC: 0.5~1.0
(b) SOC: 0~0.5图11 不同循环次数下电池的功率-SOC曲线Fig.11 Power-SOC curve of battery in different cycles
从图11可以看出,随着电池老化程度的增加,电池功率曲线明显下移,并且伴随着电池容量的衰减。不同循环次数下,电池的平均功率曲线如图12所示。从图12可以看出,在前600个循环,电池平均功率衰减不是很明显,衰减比例大约占2.7%。在电池寿命的终点,电池的内阻可能会加倍[19-20],平均功率会衰减至50%左右,因此,在SOC较低时启动或者放电会变得十分糟糕。
图12 电池老化对锂电池平均功率的影响Fig.12 Influence of battery aging on the average power
5 结论
在电磁发射应用锂电池系统中,对功率性能的研究不仅仅是为了电池的寿命安全,更多的是出于对发射任务安全的考虑。本文定义了锂电池的功率特性曲线,并通过放电实验和对比分析,从温度、SOC和电池老化3个角度开展研究,得到了高功率脉冲放电锂电池功率输出的以下几点规律:
1)不同于普通的放电工况,脉冲放电锂电池的输出功率包括电池启动功率Pign和持续功率Pcon,其与SOC的关系可以通过多项式拟合;
2)SOC为50%时,温度对电池功率的影响符合Arrhenius关系式,平均标幺功率变化率约为0.5%/K,若SOC低于10%且工作温度低于20 ℃,需严格考虑SOC不足引起的功率剧降;
3)在前600个循环,电池老化对电池功率的影响较小,平均功率变化率约为0.5%/100 Cycles。