APP下载

灌浆期淹水胁迫对广西骨干玉米自交系生理生化特性的影响

2023-11-02弓雪卢生乔陈坤刘亚利韦正乙覃宏宇钟昌松杨耀迥周锦国张述宽

南方农业学报 2023年6期
关键词:综合评价玉米

弓雪 卢生乔 陈坤 刘亚利 韦正乙 覃宏宇 钟昌松 杨耀迥 周锦国 张述宽

DOI:10.3969/j.issn.2095-1191.2023.06.018

摘要:【目的】探究灌漿期淹水胁迫下2个广西骨干玉米自交系在生理生化水平上的应答差异,为玉米耐涝性评价及耐涝栽培提供理论依据。【方法】以广西骨干玉米自交系88M-1-8和先21A为供试材料,设灌浆期授粉后正常水分处理14 d(CK-14)、18 d(CK-18)和淹水处理14 d(W-14)、18 d(W-18)共4个处理,分别测定不同处理玉米自交系的叶片含水量、叶绿素含量(SPAD值)、丙二醛(MDA)含量、脯氨酸(Pro)含量、脱落酸(ABA)含量及抗氧化酶活性,利用主成分分析和隶属函数法综合评价淹水胁迫对灌浆期玉米叶片生理生化特性的影响。【结果】88M-1-8在W-14时叶片含水量、SPAD值、SOD和POD活性均高于先21A,在W-18时叶片含水量、SPAD值、CAT活性和ABA含量均显著高于先21A(P<0.05,下同)。随着淹水天数的增加,88M-1-8叶片中CAT活性显著上升,Pro含量、SOD和POD活性显著下降;先21A叶片中MDA含量、SOD和POD活性上升,叶片含水量、CAT活性、SPAD值和ABA含量显著下降。与正常水分处理相比,淹水导致88M-1-8和先21A叶片POD活性、MDA和Pro含量上升,SPAD值和ABA含量下降,其中先21A变化幅度更大,差异均达显著水平。相关分析结果表明,叶片含水量与SPAD值呈极显著正相关(P<0.01),叶片含水量、SPAD值与MDA含量呈显著负相关,CAT活性与SOD活性呈显著负相关。利用主成分分析及隶属函数法对玉米叶片的8个生理生化指标进行综合评价,其结果为88M-1-8在W-14处理的耐涝性最强,在W-18处理的耐涝性次之;先21A在W-14处理的耐涝性第3,在W-18处理的耐涝性最差。【结论】灌浆期淹水胁迫可导致玉米叶片POD活性、MDA和Pro含量上升,SPAD值和ABA含量下降。自交系88M-1-8的变化幅度低于先21A,随着胁迫时间增加,88M-1-8的耐涝性明显优于先21A。CAT活性和ABA含量可作为玉米灌浆期叶片耐涝性的初步评价指标。

关键词:玉米;淹水胁迫;灌浆期;生理生化响应;综合评价

中图分类号:S513                          文献标志码:A 文章编号:2095-1191(2023)06-1771-09

Effects of waterlogging stress during filling stage on physiological and biochemical characteristics of backbone maize inbred

lines in Guangxi

GONG Xue1, LU Sheng-qiao1, CHEN Kun1, LIU Ya-li1,WEI Zheng-yi1, QIN Hong-yu1, ZHONG Chang-song2, YANG Yao-jiong1, ZHOU Jin-guo1*, ZHANG Shu-kuan2*

(1Corn Research Institute,Guangxi Academy of Agricultural Sciences,Nanning,Guangxi  530007,China;

2Guangxi Academy of Agricultural Sciences,Nanning,Guangxi  530007,China)

Abstract:【Objective】The purpose of the study was to investigate the differences in physiological and biochemical responses of two backbone maize inbred lines in Guangxi under waterlogging stress during the filling stage, so as to provide a theoretical basis for waterlogging-tolerance evaluation and cultivation of maize. 【Method】Four treatments were set up: the normal water treatments of 14 d (CK-14) and 18 d (CK-18) and the flooding treatments of 14 d (W-14) and 18 d (W-18) at the filling stage after pollination. The leaf water content, chlorophyll content(SPAD value), malondialdehyde (MDA) content, proline content, abscisic acid (ABA) contents and autioxidant enzyme activities of maize inbred lines were separately measured after different treatments, respectively. Effects of flooding stress on physiological and biochemical characteristics of maize leaves at filling stage were comprehensively evaluated using principal component analysis and membership function method. 【Result】At W-14, leaf water content, SPAD value, SOD and POD activities of 88M-1-8 were  higher than those of Xian 21A, and at W-18, leaf water content, SPAD value, CAT activity and ABA content were signi-ficantly higher than those of Xian 21A (P<0.05, the same below). As the number of days of flooding increased, CAT activity significantly increased and Pro content, SOD and POD activities significantly decreased in 88M-1-8 leaves; MDA content, SOD and POD activities increased, and leaf water content, CAT activity, chlorophyll and ABA content significantly decreased in Xian 21A leaves. Compared with the normal water treatment, flooding resulted in a significant increase in POD activity, MDA and Pro contents, and a significant decrease in SPAD value and ABA content in the leaves of 88M-1-8 and Xian 21A, among which the change of Xian 21A was larger and the difference was significant. The results of correlation analysis showed that leaf water content was extremely significantly and positively correlated with SPAD value (P<0.01, the same below), both were extremely significantly and negatively correlated with MDA content, and CAT activity was significantly and negatively correlated with SOD activity. The eight physiological and biochemical indicators in maize leaves were comprehensively evaluated and analyzed by principal component analysis and membership function method, and the results were as follows: the waterlogging tolerance of 88M-1-8 under W-14 treatment was the strongest, the waterlogging tolerance under W-18 treatment was the second, and the waterlogging tolerance of Xian 21A under W-14 treatment was the third, and the waterlogging tolerance under W-18 was the worst.【Conclusion】Flooding stress at filling stage can lead to increase of POD activity, MDA and Pro contents, and decrease of SPAD value and ABA content in maize leaves. The variation range of the inbred line 88M-1-8 is  lower than that of Xian 21A. With the increase of stress time, the waterlogging tolerance of 88M-1-8 is higher than Xian 21A. CAT activity and ABA content can be used as preliminary evaluation indicators for waterlogging tolerance of maize leaves during the filling stage.

Key words: maize; waterlogging stress; filling stage; physiological and biochemical responses; comprehensive evaluation

Foundation items:Guangxi Natural Science Foundation (2020GXNSFAA297136);Science and Technology Deve-lopment Project of Guangxi Academy of Agricultural Sciences(Guinongke 2021ZX11, Guinongke 2022JM18);Basic Scien-tific Research Project of Guangxi Academy of Agricultural Sciences(Guinongke 2021YT016)

0 引言

【研究意義】随着全球气候变暖,世界多数地区降水量普遍增加,过度降水极易引起水涝灾害(Huang et al.,2022a)。据统计,全球约有12%的农作物受涝渍胁迫威胁,致使全球粮食作物减产20%左右(Ren et al.,2016a;Huang et al.,2022a)。广西雨量充沛,但时空分布不均,全年降雨大部分集中在5—8月,排水不畅、低洼地区极易出现洪涝灾害(时成俏,2019)。每年5—6月是广西春玉米籽粒灌浆期,该时段遭受涝渍胁迫,会造成玉米大幅减产。因此,开展灌浆期淹水胁迫对玉米生理生化响应的研究,对广西耐涝玉米资源开发、耐涝品种选育及栽培技术探究等具有重要意义。【前人研究进展】淹水胁迫对植物产量和品质的影响较复杂,与植物的生育期、品种特性及降水的持续时间和强度密切相关(Li et al.,2011;Ren et al.,2014)。前人研究发现,玉米对淹水胁迫较敏感的时期为苗期、拔节期、抽雄期、开花期和灌浆期,且随着胁迫时间持续,产量逐渐降低(Ren et al.,2016b;Huang et al.,2022a)。Tian等(2019a)研究表明,玉米品种苗期、拔节期和抽雄期进行短期渍水和淹水处理,叶片会产生大量丙二醛(MDA),叶绿素含量降低,叶片光合作用下降;此外,淹水还会使玉米叶片的超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性增加,渗透调节物质可溶性蛋白和脯氨酸(Pro)含量提高。Huang等(2022a,2022b)研究发现,灌浆期长期涝渍胁迫导致玉米品种上部叶片的光合功能迅速衰退,抗氧化保护酶(POD、SOD和CAT等)受损,膜脂过氧化程度加剧,造成MDA大量积累。可见,短期涝渍胁迫下玉米叶片可通过抗氧化保护酶系统调节,进而有效减轻胁迫对叶片的危害;但长期涝渍胁迫会损害保护酶系统,引发叶片加速衰老(Tian et al.,2019b;Huang et al.,2022b)。此外,不同品种间耐涝性存在明显差异(Tian et al.,2019b;Bhusal et al.,2020;朱炜等,2022)。耐涝性强的玉米品种,叶片持绿性较好,膜脂过氧化损伤较轻;而耐涝性弱的品种叶绿素合成能力下降,膜脂过氧化损伤严重,叶片衰老、变黄(田礼欣,2019;Tian et al.,2019b)。朱炜等(2022)研究发现,淹水处理下砧木桃树的幼苗叶片中,耐涝品种的Pro含量显著增加,而不耐涝品种Pro含量仅略有增加。【本研究切入点】已有研究表明灌浆期淹水胁迫严重影响玉米品种的正常生长发育和产量,但目前针对玉米自交系灌浆期淹水处理下生理生化响应的研究较少,尚需深入探讨。【拟解决的关键问题】以2个广西骨干玉米自交系为供试材料,以正常水分处理为对照,设不同持续时间淹水处理,探讨灌浆期淹水胁迫下2个玉米自交系在生理生化水平上的应答差异,以期为玉米耐涝性评价及耐涝栽培提供理论依据。

1 材料与方法

1. 1 试验材料

供试玉米材料为88M-1-8(桂青贮242父本)和先21A(桂单162父本),均为广西骨干玉米自交系。

1. 2 试验方法

试验在广西农业科学院玉米研究所明阳基地开展。采用盆栽试验,试验盆高30 cm,上口径33 cm,下口径26 cm;将耕层土壤过筛装盆,每盆装入15 kg潮土。土壤速效氮含量116.0 mg/kg、速效磷含量210.1 mg/kg、速效钾含量224.0 mg/kg、有机质含量39.4 g/kg。

试验设正常水分处理(CK)和淹水处理(W),每处理设2个持续时间,即正常水分处理14 d(CK-14)和18 d(CK-18),淹水处理14 d(W-14)和18 d(W-18)。每处理3次重复,随机排列。每盆种植4株玉米,出苗后选取健康玉米定苗2株,拔节期定苗1株,前期常规管理,将长势一致的玉米自交授粉后进行淹水胁迫处理。采用双套盆法,每天补水使土壤含水量过饱和,始终保持水面高出盆中土壤表面2~3 cm,使玉米处于淹水状态。对照土壤含水量为田间持水量的75%~80%。分别在处理的第14和18 d进行取样和指标测定,每次取样15株。

1. 3 测定指标及方法

采用烘干法测定叶片含水量,叶片含水量(%)=(初始鲜重-干重)/初始鲜重×100。

叶绿素含量(SPAD值)采用叶绿素仪(SPAD-502 Plus,日本Konica Minolta公司)测定;MDA含量采用硫代巴比妥酸法测定;SOD活性采用氮蓝四唑(NBT)光还原法测定;POD活性采用愈创木酚显色法测定;CAT活性采用紫外吸收法测定;Pro含量采用比色法测定(高俊凤,2006);脱落酸(ABA)含量采用高效液相色谱法测定(王萌等,2015)。

利用主成分分析和隶属函数法综合评价不同处理下各自交系的耐涝性(任保兰等,2021;李港等,2022)。

耐涝系数=淹水条件下的测定值/正常水分条件下的测定值

变异系数(%)=(标准偏差/平均值)×100

隶属函数值U(Xj)=(Xj-Xmin)/(Xmax-Xmin)

耐涝综合评价值D=[j=1n[U(Xj×Wj)]]

式中,U(Xj)表示各指标隶属函数值,Xj表示第j个综合指标,Xmax和Xmin分别表示第j个综合指标的最大值和最小值,j=1,2,3,…,n。D值为淹水胁迫下各试材的耐涝性综合评价值,Wj为各指标权重。

1. 4 统计分析

试验数据采用Excel 2010和SPSS 25.0进行统计分析,采用Excel 2010和Photoshop CC 2020制图。

2 结果与分析

2. 1 灌浆期淹水胁迫对玉米叶片含水量的影响

由图1可知,CK-14处理下,88M-1-8的叶片含水量显著低于先21A(P<0.05,下同);W-18处理下,88M-1-8的叶片含水量显著高于先21A;W-14和CK-18处理下,2个玉米自交系的叶片含水量无显著差异(P>0.05,下同)。随着处理天数的增加,先21A的叶片含水量显著下降,88M-1-8的叶片含水量也略有下降,但变化不显著。与CK-14处理相比,W-14处理下88M-1-8和先21A的叶片含水量分别下降1.50%和7.73%;与CK-18处理相比,W-18处理下88M-1-8和先21A的叶片含水量分别下降1.59%和11.15%。由此可知,淹水胁迫对88M-1-8的叶片含水量影响较小,对先21A则影响较大,且随着处理时间的延长影响逐渐增强。

2. 2 灌浆期淹水胁迫对玉米叶片SPAD值的影响

由图2可看出,不同处理下88M-1-8的SPAD值均显著高于先21A。随着淹水处理天数的增加,2个玉米自交系的叶片SPAD值均呈下降趋势。与CK-14处理相比,W-14处理下88M-1-8和先21A的SPAD值分别显著下降7.97%和29.27%;与CK-18处理相比,W-18处理下88M-1-8和先21A的SPAD值分别显著下降9.77%和40.24%。可见,淹水胁迫对88M-1-8叶片叶绿素含量的影响小于先21A。

2. 3 灌浆期淹水胁迫对玉米叶片MDA含量的影响

由图3可看出,88M-1-8在W-14和W-18处理下的MDA含量均显著低于先21A。随着淹水处理天数的增加,先21A的叶片MDA含量显著上升5.43%。与CK-14处理相比,W-14处理下88M-1-8和先21A的MDA含量分别显著上升11.16%和22.19%;与CK-18处理相比,W-18处理下88M-1-8和先21A的MDA含量分别显著上升14.30%和32.11%,先21A在W-18处理上升幅度最大,88M-1-8在W-14处理上升幅度最小。表明淹水胁迫对88M-1-8和先21A的叶片MDA含量均有影响,其中W-18对先21A的影响最大。

2. 4 灌浆期淹水胁迫对玉米叶片抗氧化酶活性的影响

由图4可看出,淹水脅迫对2个玉米自交系抗氧化酶活性的影响存在差异。图4-A显示,88M-1-8的SOD活性在CK-14、CK-18和W-14处理下均显著高于先21A,在W-18处理下显著低于先21A。随着正常水分和胁迫处理天数的增加,88M-1-8叶片的SOD活性均降低,先21A的SOD活性均升高。与CK-14处理相比,88M-1-8和先21A的SOD活性在W-14处理下分别上升6.24%和15.78%;与CK-18处理相比,W-18处理下88M-1-8的SOD活性显著下降18.78%,先21A的SOD活性显著上升24.45%。

图4-B显示,88M-1-8在W-14处理下POD活性显著高于先21A,在CK-18和W-18处理下POD活性显著低于先21A。随着淹水天数的增加,88M-1-8中POD活性显著降低15.08%,先21A叶片中POD活性显著上升20.03%。与CK-14处理相比,W-14处理下88M-1-8和先21A的POD活性分别显著上升21.33%和9.56%;与CK-18处理相比,W-18处理下88M-1-8和先21A的POD活性分别上升2.16%和12.46%,88M-1-8在W-14处理上升幅度最大,在W-18处理上升幅度最小。

图4-C显示,88M-1-8在CK-14、CK-18和W-14处理下的CAT活性均显著低于先21A,在W-18处理下的CAT活性显著高于先21A。随着淹水天数的增加,88M-1-8中CAT活性显著上升26.00%,先21A叶片中CAT活性显著下降57.21%。与CK-14处理相比,W-14处理下88M-1-8和先21A的CAT活性无显著变化;与CK-18处理相比,W-18处理下88M-1-8的CAT活性显著上升107.81%,先21A的CAT活性显著下降61.10%。

2. 5 灌浆期淹水胁迫对玉米叶片Pro含量的影响

由图5可看出,88M-1-8在W-14和W-18处理下的Pro含量显著低于先21A。随着处理天数的增加,正常水分条件下88M-1-8和先21A的Pro含量分别显著上升16.30%和15.94%;淹水条件下88M-1-8中Pro含量显著下降23.32%,先21A中Pro含量上升1.7%。与CK-14处理相比,W-14处理下88M-1-8和先21A的Pro含量分别显著上升74.93%和128.90%;与CK-18处理相比,W-18处理下88M-1-8和先21A的Pro含量分别显著上升15.34%和100.77%。淹水胁迫对88M-1-8叶片Pro含量的影响较小,对先21A的影响较大。

2. 6 灌浆期淹水胁迫对玉米叶片ABA含量的影响

由图6可看出,88M-1-8在CK-14、CK-18和W-14处理下的ABA含量显著低于先21A,在W-18处理下的ABA含量显著高于先21A。随着处理天数的增加,正常水分条件下先21A叶片ABA含量显著上升12.08%,淹水处理条件下先21A叶片ABA含量显著下降79.11%。与CK-14处理相比,W-14处理下88M-1-8和先21A的ABA含量分别下降11.79%和16.53%;与CK-18处理相比,W-18处理下88M-1-8和先21A的ABA含量分别显著下降22.87%和84.44%,先21A在W-18处理时下降幅度最大,88M-1-8在W-14处理时下降幅度最小。可见,淹水胁迫对88M-1-8叶片ABA含量影响较小,对先21A影响较大,尤其是W-18引起先21A的ABA含量急剧下降。

2. 7 各项指标的耐涝系数及相关分析

由表1可知,CAT活性和ABA含量的变异系数较大,分别为62.92%和51.43%,其次是Pro含量,为26.89%,说明灌浆期淹水胁迫对这3个指标的影响较大。玉米淹水后,MDA含量、POD活性和Pro含量的耐涝系数大于1,叶片含水量、SPAD值和ABA含量的耐涝系数小于1,其余单项指标变化幅度不一致。由表2相关系数矩阵可知,叶片含水量与SPAD值呈极显著正相关(P<0.01),SPAD值和叶片含水量与MDA含量均呈显著负相关,CAT活性与SOD活性呈显著负相关,其他指标间无显著相关性。玉米各指标的耐涝系数变化幅度和各项指标间的相关性不同,难以用单项指标判定自交系的耐涝性,需在此基础上开展多元统计分析。

2. 8 各项指标的耐涝性分析

2. 8. 1 主成分分析 根据主成分分析结果(表3),主成分PC1和PC2的贡献率分别为70.21%和22.41%,累积贡献率达92.62%。决定PC1大小的指标主要有叶片含水量、SPAD值、MDA含量、SOD活性、CAT活性、Pro含量和ABA含量,决定PC2大小的指標主要有POD活性、Pro含量和ABA含量。在PC1中叶片含水量、SPAD值、CAT活性和ABA含量有较高的正向载荷,MDA含量、SOD活性和Pro含量有较高的负向载荷。而在PC2中POD活性有较高的正向载荷。

2. 8. 2 隶属函数分析 表4为2个玉米自交系不同处理的综合耐涝评价D值,D值越大,则该材料的耐涝性越强。结果表明,88M-1-8在W-14处理下的耐涝性最强,在W-18处理下的耐涝性次之;先21A在W-14处理下的耐涝性第3,在W-18处理下的耐涝性最差。

3 讨论

3. 1 玉米自交系对灌浆期淹水胁迫的响应

前人研究表明,玉米籽粒灌浆期涝渍胁迫可导致叶片气孔关闭、蒸腾效率降低,叶绿素含量和光合速率下降,叶片含水量降低,最终使叶片衰老、变黄、脱落。源叶光合同化物积累量的降低限制籽粒灌浆能力,导致产量下降(Huang et al.,2022a,2022b)。淹水处理下苹果树叶片中叶绿素含量显著下降,且不同品种其叶绿素降低程度存在差异(Bhusal et al.,2020)。本研究发现,灌浆期淹水胁迫下,玉米自交系88M-1-8和先21A的叶片含水量和SPAD值均有所下降,说明2种自交系均受淹水胁迫的影响。88M-1-8降幅较小,说明88M-1-8叶片持绿性较好,受涝害影响较小;先21A降幅较大,叶片持绿性较差,易失水变黄,受涝害影响较大(Bhusal et al.,2020)。

淹水胁迫下,植物叶片产生大量活性氧,造成膜脂过氧化,产生MDA,随着胁迫持续增加,积累的MDA又促进膜脂过氧化,造成叶片早衰(Yu et al.,2017;Yin et al.,2019;Huang et al.,2022b)。一般来说,耐涝性弱的品种其膜脂过氧化程度高于耐涝性强的品种(Loreti et al.,2016;Tian et al.,2019a)。本研究中,灌浆期淹水胁迫造成先21A和88M-1-8叶片MDA含量均显著增加,与玉米苗期涝渍胁迫下叶片中MDA含量变化的研究结果相似(田礼欣,2019),表明灌浆期淹水胁迫后不同玉米自交系叶片均受到一定程度的膜脂过氧化损伤,其中88M-1-8叶片的MDA含量上升幅度较小,说明88M-1-8膜脂过氧化损伤较轻;先21A叶片MDA含量上升幅度较大,表明先21A膜脂过氧化损伤严重。

逆境下植物通过增加抗氧化保护酶活性清除细胞内的活性氧,维持细胞膜的稳定性,提高植物的抗逆性(Tang et al.,2010;Jia et al.,2019;Wang et al.,2019)。不同耐涝能力植物的抗氧化酶活性对胁迫响应存在差异(Li et al.,2018;Zhou et al.,2019)。本研究中,与W-14处理相比,W-18处理下88M-1-8叶片中SOD和POD活性下降,CAT活性上升;先21A叶片3种酶的变化趋势相反,说明不同玉米自交系遭受淹水胁迫时,通过调节各自抗氧化酶活性变化,不同程度清除过量活性氧,表现出不同耐涝性(Li et al.,2018)。

除抗氧化保护酶系统外,植物还可通过调节可溶性蛋白、可溶性糖、游离脯氨酸等渗透调节物质含量,改变细胞渗透势,减轻逆境胁迫对植物的伤害(Tian et al.,2019a;;Huang et al.,2022b;王召元等,2022)。Huang等(2022b)研究表明,当玉米品种灌浆期遭受淹水胁迫时,叶片中Pro含量均高于对照。本研究发现,2个自交系灌浆期淹水胁迫后叶片Pro含量均显著增加,与Huang等(2022b)研究中玉米品种的变化规律一致。其机理可能是淹水胁迫促使Pro合成或减缓其降解,通过调控细胞的渗透势,参与植物逆境响应(Xu et al.,2015;Tian et al.,2019b)。

在涝渍条件下,植物遭受低氧胁迫,ABA和乙烯作为“逆境”激素,其浓度在较短时间内迅速提高,乙烯通过抑制ABA的生物合成和促进ABA的分解代谢,使ABA达最大值后又急剧下降(Benschop et al.,2006;王松,2010;Jurczyk et al.,2021)。本研究发现,灌浆期长期淹水胁迫促使88M-1-8叶片中ABA含量缓慢下降,而先21A中ABA含量则急剧下降,说明长期淹水胁迫引起逆境激素ABA含量显著变化,其中对先21A叶片中ABA含量影响更大,可能是先21A中积累大量乙烯,促使ABA含量迅速下降(Benschop et al.,2006;Voesenek et al.,2006)。

3. 2 玉米自交系耐涝性综合评价

植物耐涝性是一个受遗传背景和外部环境影响的综合性状,单一抗性指标无法全面、准确地作出评价(刘晓纳等,2016;朱向濤等,2017)。耐涝系数可消除不同材料间的固有差异,采用隶属函数法对耐涝系数开展综合分析,可更准确评价材料间的耐涝性(李港等,2022)。本研究将淹水胁迫下测定的不同玉米自交系叶片含水量、SPAD值、MDA含量、Pro含量及抗氧化酶活性等8项生理生化指标转换为耐涝系数,作为评价单项耐涝能力的指标,并进行相关分析,发现各项指标间存在不同程度相关性,叶片含水量与SPAD值呈极显著正相关,SPAD值和叶片含水量与MDA含量均呈显著负相关,CAT活性与SOD活性呈显著负相关。相关分析中指标间的相互作用使耐涝信息发生重叠,且各指标的权重不同,若直接采用隶属函数法进行评价,可能造成分析结果出现偏差。为减少信息重叠,需进一步开展主成分分析(朱炜等,2022)。主成分分析将若干个单项指标进行降维、建模和线性分类,是一种科学、有效的评价方法。本研究采用主成分分析对耐涝和不耐涝自交系的8个单项指标进行降维处理,主成分PC1和PC2的累积贡献率达92.62%。再结合隶属函数分析,对不同自交系及处理天数的耐涝性进行综合评价。其中,8个指标均为决定PC1和PC2大小的主要指标,CAT活性和ABA含量是变异系数最大的2个重要指标,表明玉米灌浆期叶片中CAT活性和ABA含量的变化情况,能较大程度反映玉米耐涝性综合评价结果。因此,在玉米耐涝性评价过程中,如遇待评价样品过多,或时间、人员和经费不充足等情况,可考虑测定CAT活性和ABA含量对玉米灌浆期叶片的耐涝性进行初步评价。

4 结论

灌浆期淹水胁迫可导致玉米叶片POD活性、MDA和Pro含量上升,SPAD值和ABA含量下降。自交系88M-1-8的各指标变化幅度低于先21A,且随着胁迫时间延长,88M-1-8的耐涝性明显优于先21A。CAT活性和ABA含量可作为玉米灌浆期叶片耐涝性的初步评价指标。

参考文献:

高俊凤. 2006. 植物生理学实验指导[M]. 北京:高等教育出版社. [Gao J F. 2006. Experimental guidance of plant physiology[M]. Beijing:Higher Education Press.]

李港,彭慧敏,蔡小东,马佳伟,马慧慧,尹军良,尚淼,张中华,朱永兴,刘奕清. 2022. 5个生姜品种对淹水胁迫的生理响应及耐涝性评价[J]. 南方农业学报,53(8):2196-2204. [Li G,Peng H M,Cai X D,Ma J W,Ma H H,Yin J L,Shang M,Zhang Z H,Zhu Y X,Liu Y Q. 2022. Physiological response of 5 ginger varieties to waterlogging stress and evaluation of their waterlogging tolerance[J]. Journal of Southern Agriculture,53(8):2196-2204.] doi:10.3969/j.issn.2095-1191.2022.08.012.

刘晓纳,徐媛媛,朱世平,赵晓春. 2016. 不同柑橘砧木的耐旱性评价[J]. 果树学报,33(10):1230-1240. [Liu X N,Xu Y Y,Zhu S P,Zhao X C. 2016. Evaluation of drought tolerance in different citrus rootstocks[J]. Journal of Fruit Science,33(10):1230-1240.] doi:10.13925/j.cnki.gsxb. 20160109.

任保兰,耿建建,吕亚,原慧芳,郑诚,杨焱. 2021. 辣木幼苗对淹水胁迫的生理响应及耐涝性综合评价[J]. 南方农业学报,52(3):789-796. [Ren B L,Geng J J,Lü Y,Yuan H F,Zheng C,Yang Y. 2021. Physiological response and tolerance evaluation to waterlogging in moringa at seedling stage[J]. Journal of Southern Agriculture,52(3):789-796.] doi:10.3969/j.issn.2095-1191.2021.03.027.

时成俏. 2019. 广西玉米生产发展历程存在问题及对策[J]. 中国种业,(4):24-29. [Shi C Q. 2019. Development course,existing problems and countermeasures of maize production in Guangxi[J]. China Seed Industry,(4):24-29.] doi:10.19462/j.cnki.1671-895x.20190325.012.

田禮欣. 2019. 涝渍胁迫对玉米农艺性状、生理特性及产量的影响[D]. 哈尔滨:东北农业大学. [Tian L X. 2019. Effects of waterlogging stress on agronomic characteristics,physiological characteristics and yield of maize[D]. Harbin:Northeast Agricultural University.] doi:10.7666/d.Y358 8330.

王萌,张海惠,刘琪,张利. 2015. 蚕豆中5种内源激素的高效液相色谱测定[J]. 甘肃农业大学学报,50(6):58-61. [Wang M,Zhang H H,Liu Q,Zhang L. 2015. Stimutaneous determination of five endogenous hormones in vicia faba by high performance liquid chromatography[J]. Journal of Gansu Agricultural University,50(6):58-61.] doi:10.13432/j.cnki.jgsau.2015.06.011.

王松. 2010. 淹水胁迫对秤锤树生长及生理特性的影响[D]. 南京:南京林业大学. [Wang S. 2010. Effects of water stress on growth and physiological characters of Sinojackia xylocarpa Hu[D]. Nanjing:Nanjing Forestry University.]

王召元,田启航,常瑞丰,刘国俭,陈湖,李永红. 2022. 桃不同品种对低温胁迫的生理响应及评价[J]. 中国农业大学学报,27(2):66-77.[Wang Z Y,Tian Q H,Chang R F,Liu G J,Chen H,Li Y H. 2022. Physiological response and evaluation of different peach varieties under low temperature stress[J]. Journal of China Agricultural University,27(2):66-77.] doi:10.11841/j.issn.1007-4333.2022. 02.07.

朱炜,龚林忠,王富荣,王会良,刘勇,艾小艳,张杨,郎鹏,史文琦,何华平. 2022. 5个桃砧木品种对淹水胁迫的生理响应及耐涝性评价[J]. 南方农业学报,53(10):2937-2945. [Zhu W,Gong L Z,Wang F R,Wang H L,Liu Y,Ai X Y,Zhang Y,Lang P,Shi W Q,He H P. 2022. Phy-siological responses and tolerance evaluation of five peach rootstock varieties under waterlogging conditions[J]. Jour-nal of Southern Agriculture,53(10):2937-2945.] doi:10.3969/j.issn.2095-1191.2022.10.026.

朱向涛,金松恒,哀建国,蒋海凌,王翔. 2017. 牡丹不同品种耐涝性综合评价[J]. 核农学报,31(3):607-613. [Zhu X T,Jin S H,Ai J G,Jiang H L,Wang X. 2017. Evaluation of waterlogging tolerance of peony variety[J]. Journal of Nuclear Agricultural Sciences,31(3):607-613.] doi:10. 11869/j.issn.100-8551.2017.03.0607.

Benschop J J,Bou J,Peeters A J M,Wagemaker N,Guhl K,Ward D,Hedden P,Moritz T,Voesenek L A C J. 2006. Long-term submergence-induced elongation in Rumex palustris requires abscisic acid-dependent biosynthesis of gibberellin[J]. Plant Physiology,141(4):1644-1652. doi:10.1104/pp.106.082636.

Bhusal N,Kim H S,Han S G,Yoon T M. 2020. Photosynthe-tic traits and plant-water relations of two apple cultivars grown as bi-leader trees under long-term waterlogging conditions[J]. Environmental and Experimental Botany,176:104111. doi:10.1016/j.envexpbot.2020.104111.

Huang C,Gao Y,Qin A Z,Liu Z G,Zhao B,Ning D F,Ma S T,Duan A W,Liu Z D. 2022a. Effects of waterlogging at different stages and durations on maize growth and grain yields[J]. Agricultural Water Management,261:107334. doi:10.1016/j.agwat.2021.107334.

Huang C,Zhang W Q,Wang H,Gao Y,Ma S T,Qin A Z,Liu Z G,Zhao B,Ning D F,Zheng H J,Liu Z D. 2022b. Effects of waterlogging at different stages on growth and ear quality of waxy maize[J]. Agricultural Water Mana-gement,266:107603. doi:10.1016/j.agwat.2022.107603.

Jia L T,Qin X,Lyu D G,Qin S J,Zhang P. 2019. ROS production and scavenging in three cherry rootstocks under short-term waterlogging conditions[J]. Scientia Horticulturae,257(4):108647. doi:10.1016/j.scienta.2019.108647.

Jurczyk B,Pociecha E,Janowiak F,Dziurka M,Ko´scik I,Rapacz M. 2021. Changes in ethylene,ABA and sugars regu-late freezing tolerance under low-temperature waterlogging in Lolium perenne[J]. International Journal of Molecular Sciences,22(13):6700. doi:10.3390/ijms2213 6700.

Li C Y,Jiang D,Wollenweber B,Li Y,Dai T B,Cao W X. 2011. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat[J]. Plant Science,180(5):672-678. doi:10.1016/j.plantsci.2011.01.009.

Li W,Mo W,Ashraf U,Li G,Wen T,Abrar M,Gao L,Liu J,Hu J. 2018. Evaluation of physiological indices of waterlogging tolerance of different maize varieties in South China[J]. Applied Ecology and Environmental Research,16(2):2059-2072. doi:10.15666/aeer/1602_20592072.

Loreti E,van Veen H,Perata P. 2016. Plant responses to floo-ding stress[J]. Current Opinion in Plant Biology,33:64-71. doi:10.1016/j.pbi.2016.06.005.

Ren B Z,Dong S T,Liu P,Zhao B,Zhang J W. 2016a. Ridge tillage improves plant growth and grain yield of waterlogged summer maize[J]. Agricultural Water Management,177:392-399. doi:10.1016/j.agwat.2016.08.033.

Ren B Z,Zhang J W,Li X,Fan X,Dong S T,Liu P,Zhao B. 2014. Effects of waterlogging on the yield and growth of summer maize under field conditions[J]. Canadian Journal of Plant Science,94:23-31. doi:10.4141/cjps2013-175.

Ren B Z,Zhang J,Dong S T,Liu P Q,Zhao B. 2016b. Effects of duration of waterlogging at different growth sta-ges on grain growth of summer maize (Zea mays L.) under field conditions[J]. Journal of Agronomy and Crop Science,202(6):564-575. doi:10.1111/jac.12183.

Tang B,Xu S Z,Zou X L,Zheng Y L,Qiu F Z. 2010. Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging-tolerant and waterlogging-sensitive maize genotypes at seedling stage[J]. Agricultural Sciences in China,9(5):651-661. doi:10.1016/S1671-2927(09)60140-1.

Tian L X,Bi W S,Li X,Sun L,Li J. 2019a. Effects of waterlogging stress on the physiological response and grain-filling characteristics of spring maize (Zea mays L.) under field conditions[J]. Acta Physiologiae Plantarum,41(5):63. doi:10.1007/s11738-019-2859-0.

Tian L X,Li J,Bi W S,Zuo S Y,Li L J,Li W L,Sun L. 2019b. Effects of waterlogging stress at different growth stages on the photosynthetic characteristics and grain yield of spring maize (Zea mays L.) under field conditions[J]. Agricultural Water Management,218:250-258. doi:10.1016/j.agwat.2019.03.054.

Voesenek L A,Colmer T D,Pierikr R,Millenaar F F,Peeters A J M. 2006. How plants cope with complete submergence[J]. New Phytologist,170(2):213-226. doi:10.1111/j.1469-8137.2006.01692.x.

Wang H M,Chen Y L,Hu W,Snider J L,Zhou Z G. 2019. Short-term soil-waterlogging contributes to cotton cross tolerance to chronic elevated temperature by regulating ROS metabolism in the subtending leaf[J]. Plant Physio-logy and Biochemistry,139:333-341. doi:10.1016/j.plaphy. 2019.03.038.

Xu L,Pan Y,Yu F. 2015. Effects of water-stress on growth and physiological changes in Pterocarya stenoptera seedlings[J]. Scientia Horticulturae,190:11-23. doi:10.1016/ j.scienta.2015.03.041.

Yin J L,Jia J H,Lian Z Y,Hu Y H,Guo J,Huo H Q,Zhu Y X,Gong H J. 2019. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage[J]. Ecotoxicology and Environmental Safety,169:8-17. doi:10.1016/j.ecoenv. 2018.10.105.

Yu M,Zhou Z Q,Deng X Y,Li J W,Mei F Z,Qi Y H. 2017. Physiological mechanism of programmed cell death aggravation and acceleration in wheat endosperm cells caused by waterlogging[J]. Acta Physiologiae Plantarum,39(1):23. doi:10.1007/s11738-016-2324-2.

Zhou Z C,Li Gang,Sun X M,Xu F,Chen Z X. 2019. Physiological responses and tolerance evaluation of five poplar varieties to waterlogging[J]. Notulae Botanicae Horti Atrobotanici Cluj-Napoca,47(3):658-667. doi:10.15835/nbha 47311440.

(责任编辑 王 晖)

收稿日期:2023-02-03

基金项目:广西自然科学基金项目(2020GXNSFAA297136);广西农业科学院科技发展基金项目(桂农科2021ZX11,桂农科2022 JM18);广西农业科學院基本科研业务专项(桂农科2021YT016)

通讯作者:周锦国(1975-),https://orcid.org/0009-0002-8372-1649,副研究员,主要从事玉米遗传育种研究工作,E-mail:463153484 @qq.com;张述宽(1963-),https://orcid.org/0009-0000-1661-9666,研究员,主要从事玉米遗传育种研究工作,E-mail:790039187@qq.com

第一作者:弓雪(1983-),https://orcid.org/0000-0002-5189-8709,博士,副研究员,主要从事玉米分子育种及新品种选育研究工作,E-mail:280404497@qq.com

猜你喜欢

综合评价玉米
收玉米啦!
玉米适当晚收好处多
我的玉米送给你
陕西省各地区人力资本水平综合评价与分析
10kV配电线路带电作业安全综合评价应用探究
基于熵权TOPSIS法对海口市医疗卫生服务质量的综合评价
主成分分析法在大学英语写作评价中的应用
郑州市各县(市)创新能力综合评价
七穗玉米