APP下载

常绿阔叶林植物叶片N、P化学计量特征对毛竹扩张的响应

2023-11-01王琳欧阳明宋述望曾小霞宋庆妮刘骏方熊栾丰刚杨清培

广西植物 2023年9期
关键词:阔叶林毛竹林毛竹

王琳 欧阳明 宋述望 曾小霞 宋庆妮 刘骏 方熊 栾丰刚 杨清培

摘 要:為从生态化学计量内平衡角度解释常绿阔叶林不同层次植物对毛竹(Phyllostachys edulis)扩张的生存响应差异性,该研究采用空间代替时间的方法,在江西井冈山国家级自然保护区沿毛竹扩张方向选取典型毛竹-常绿阔叶林界面,依次设置毛竹林、竹阔混交林和常绿阔叶林样地,比较分析了毛竹扩张方向上样地内不同乔木层、灌木层、草本层植物叶片及土壤N、P含量及比例。结果表明:(1)从毛竹林到阔叶林,土壤N含量上升,P含量下降,N∶P上升(P<0.05);乔木层树种 [红楠(Machilus thunbergii)、赤杨叶(Alniphyllum fortunei)及交让木(Daphniphyllum macropodum)]叶片P含量下降,N∶P上升(P<0.05);除灌木层的红果山胡椒(Lindera erythrocarpa)外,各林分中的灌木层和草本层植物N、P含量及比例变化较小。(2)土壤N∶P与乔木层、草本层和灌木层植物叶片N∶P分布呈显著正相关、负相关与不相关。(3)在各林分中,毛竹叶片N、P含量及比例较稳定。综上认为,毛竹通过改变土壤N、P化学计量特征进行扩张,引起植物体N、P元素化学计量特征发生变化。灌木及草本植物受土壤异质性影响较小,但是乔木层植物N、P元素化学计量特征却因此失衡,这可能是阔叶林乔木层树种存亡受威胁的重要原因。

关键词: 毛竹扩张, 植物多样性, 生态化学计量内平衡, 土壤N∶P, 江西井冈山国家级自然保护区

中图分类号:Q948

文献标识码:A

文章编号:1000-3142(2023)09-1737-10

收稿日期:2022-07-10

基金项目:国家自然科学基金(32060319,41807028); 江西省“千人计划”引进类创新领军人才长期青年项目(jxsq2020101079)。

第一作者: 王琳(1997-),硕士研究生,研究方向为森林资源开发与利用,(E-mail)WangLLin962464@163.com。

*通信作者:杨清培,博士,教授,研究方向为竹林生态与养分管理,(E-mail)Qingpeiyang@126.com。

Response of N and P stoichiometric characteristics of

evergreen broad-leaved forest plant leaf

to Phyllostachys edulis expansion

WANG Lin1,2, OUYANG Ming3, SONG Shuwang1,2, ZENG Xiaoxia1,2, SONG Qingni1,2,

LIU Jun1,2, FANG Xiong4, LUAN Fenggang1,2, YANG Qingpei1,2*

( 1. College of Forest, Jiangxi Agricultural University, Nanchang 330045, China; 2. Jiangxi Provincial Key Laboratory for Bamboo Germplasm

Resources and Utilization, Jiangxi Agricultural University, Nanchang 330045, China; 3. College of Urban and Environmental Sciences, Peking

University, Beijing 100871, China; 4. College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China )

Abstract:In order to explain thedifference of survival response of plants at different levels in evergreen broad-leaved forest to the Phyllostachys edulis expansion from the perspective of ecological stoichiometry homeostasis, this study used the method of space-time substitution, a typical P. edulis evergreen broad-leaved forest interface including P. edulis forest, P. edulis broad-leaved mixed forest and evergreen broad-leaved forest was selected in Jinggangshan National Nature Reserve, Jiangxi Province. The N and P contents of soil and leaves of P. edulis, broad-leaved trees, shrubs and herbaceous layer plants in each forest were compared and analyzed. The results were as follows: (1) From bamboo forest to evergreen broad-leaved forest, the soil N content and N∶P increased, while soil P content decreased; the leaf P contents of tree species (Machilus thunbergii, Alniphyllum fortunei and Daphniphyllum macropodum) decreased and the N∶Pincreased. Unlike the trees, the leaf N and P stoichiometric characteristics of plants both in shrub and herbaceous layers showed no significant change, except the shrub tree Lindera erythrocarpa. (2) The soil N∶P was positively correlated with the leaf N∶P of trees, negatively correlated with that of shrubs and had no correlation with that of herbaceous plants, respectively. (3) The leaf N and P contents and N∶P for P. edulis remained stable. In conclusion, P. edulis expansion changes plant leaf N and P stoichiometric characteristics by altering the soil N and P stoichiometric characteristics. Shrubs and herbaceous plants are less affected, however, it causes the imbalance of plant N and P stoichiometric characteristics of tree layer plants, which may be an important reason for the survival of tree species in evergreen broad-leaved forest.

Key words: Phyllostachys edulis expansion, plant diversity, ecological stoichiometry homeostasis, soil N∶P, Jiangxi Jinggangshan National Nature Reserve

毛竹(Phyllostachys edulis)是一种高大乔木状竹类植物,其凭借克隆繁殖、生理整合的内禀优势以及灵活的细根竞争策略,可向邻近次生群落迅速扩张(杨清培等,2015;李伟成等,2018;陈才榜,2022),并排斥其他树种,成为群落优势物种,严重地影响了当地森林景观(Ying et al., 2016)和生态系统功能(Okutomi et al., 1996),引起了生态学界的广泛关注。常绿阔叶林是亚热带地区的地带性植被,是生物多样性的重要组成部分(陈婷婷等,2018;杨起帆等,2021;黄雍容等,2021)。常绿阔叶林分布区是毛竹的适生区,其遭受破坏演变成次生林后经常受到毛竹扩张的严重威胁,不仅使群落组成和结构简化,而且导致物种多样性下降(欧阳明等,2016;赵雨虹等,2017;童冉等,2019)。有研究发现,不同层次植物多样性对毛竹扩张的响应表现出明显差异,如欧阳明等(2016)和白尚斌等(2013)均表示毛竹扩张导致常绿阔叶林乔木层的物种丰富度显著降低,而对灌木层和草本层的物种丰富度的影响并不显著。那么,为什么不同层次植物的生存对毛竹扩张的响应会有所不同?

生态化学计量学理论认为,有机体的生存生长与体内元素化学比例紧密相关,在漫长的进化过程中,有机体已经形成特有的元素化学组成与比例,只有保持体内化学计量内平衡才能生存(Chen et al., 2005;蒋龙等,2019;Zhang et al., 2020;黄雍容等,2021)。N、P是植物体内重要限制性营养因素,两者协同影响植物生存生长(王洪义等,2020;陈文等,2020)。植物体N、P含量及其比例易受植物类群和土壤N、P化学计量特征的影响(刘超等,2012;刘岑薇等,2017;刘小玉,2020)。刘骏等(2013)研究表明毛竹扩张导致了竹阔界面两侧土壤N、P的异质性。然而,常绿阔叶林不同层次的植物对毛竹扩张引起的土壤异质性的响应程度尚不清楚。

为此,本研究采用时空替代法,在江西井冈山国家级自然保护区选择典型毛竹-常绿阔叶林界面(以下简称竹阔界面),对比分析毛竹林、竹阔混交林和常绿阔叶林样地土壤、不同植物叶片N、P含量及其比例。拟解决以下问题:(1)毛竹扩张对常绿阔叶林土壤N、P的化学计量特征的影响;(2)毛竹扩张过程中毛竹自身以及常绿阔叶林中不同层次植物叶片N、P化学计量特征;(3)土壤与植物间的N、P化学计量特征的关系。通过比较不同植物N、P化学计量特征对毛竹扩张的敏感性,揭示群落不同层次植物对毛竹扩张生存响应差异的生理机制。

1 材料与方法

1.1 研究区概况

江西井冈山国家级自然保护区(114°04′—114°16′ E、26°38′—26°40′ N)处于中国大陆东南丘陵盆地区,属于中亚热带季风气候(张继平等,2014),四季分明,水热条件充沛,年平均气温14.2 ℃。最热为7月,平均气温23.9 ℃,极端高温36.7 ℃;最冷为1 月,平均气温3.4 ℃,极端低温-11.0 ℃;年平均降水量1 889.8 mm;海拔202~2 120.4 m(欧阳明等,2016)。土壤以山地黄壤为主,土层厚度一般为50~80 cm,土质疏松、肥沃、湿润(向琳等,2019)。该区地带性植被为常绿阔叶林,是毛竹的适生区。由于长期的人为采伐和自然干扰,毛竹不断向邻近的常绿阔叶林扩张,因此形成大量竹阔混交林甚至毛竹林,这为本试验提供了理想研究场所(刘骏等,2013)。

1.2 样地设置

在保护区海拔为850~950 m处,选择典型的毛竹向常绿阔叶林扩张的样地,沿毛竹扩张方向设置大小为20 m × 30 m的毛竹林(Phyllostachys edulis forest, PEF)、竹阔混交林(P. edulis broad-leaved mixed forest, PBMF)和常绿阔叶林(evergreen broad-leaved forest, EBF)样方,3次重复,总计9个样方。常绿阔叶林为正在恢复中的次生常绿阔叶林,乔木层平均高度17.0 m、胸径15.8 cm、密度1 000 plants·hm-2、郁閉度0.85,优势种主要为红楠(Machilus thunbergii),林龄40~50年,伴生树种主要有交让木(Daphniphyllum macropodum)、赤杨叶(Alniphyllum fortunei)等;竹阔混交林为毛竹向阔叶林扩张6~7年后形成的混交林,竹木数量比为8∶1,其中毛竹高约15 m,密度约4 200 plants·hm-2,郁闭度0.8;毛竹林为约30年前自然生长形成的纯林,密度约5 200 plants·hm-2,平均胸径10.0 cm,平均高度14.0 m。

1.3 样品采集和指标测定

2014年8月,在毛竹林、竹阔混交林样方中沿东南西北4个方向分别采集健康成熟的毛竹鲜叶,然后将样品进行混合;以同样的方法在毛竹林、竹阔混交林和常绿阔叶林样方中采集其他植物鲜叶 [乔木层:红楠、交让木、赤杨叶;灌木层:格药柃(Eurya muricata)、油茶(Camellia oleifera)、朱砂根(Ardisia crenata)和红果山胡椒(Lindera erythrocarpa);草本层:狗脊(Woodwardia japonica)、寒莓(Rubus buergeri)和淡竹叶(Lophatherum gracile)]。每个样方选择每种树种4株,共384份样品。将所有样品带回实验室后105 ℃杀青,磨成粉,过60目筛备用。

在每块样方中沿“S”路线选取15个采样点,用内径5 cm土钻,取0~15 cm的土壤样品,然后将样品混合成3份,9个样方,共27个样品。将采集的样品,装入密封袋,带回实验室,自然风干后过100目筛备用。样品全氮、全磷测定分别采用靛酚蓝比色法、钼锑抗比色法,具体步骤参考《土壤农业化学分析》(鲁如坤,2000)。

1.4 数据处理与分析

采用一般线性模型(general linear model,GLM)单因素方差分析毛竹林、竹阔混交林和常绿阔叶林的土壤N、P含量及N∶P的差异(α=0.05);采用Fisher最小显著差异法(LSD)对不同群落间植物叶片N、P含量及N∶P进行差异显著性检验;采用Pearson相关分析法分析土壤与植物叶片N、P含量及N∶P的关系。上述分析由软件SPSS 19.0完成,数据整理与制图由软件Excel 2007和软件Origin 9.0实现。

2 结果与分析

2.1 3种林分土壤N、P含量比较

毛竹林、竹阔混交林和常绿阔叶林的土壤N含量分别为3.45、3.90、4.58 mg·g-1,土壤P含量分别为0.56、0.53、0.49 mg·g-1,N∶P分别为6.16、7.36、9.35,即从阔叶林到毛竹林,毛竹林土壤N含量和N∶P分别下降了24.67%和34.12%,P含量升高了14.29%(图1)。

2.2 3种林分乔木层叶片N、P化学计量特征

红楠和赤杨叶的叶片N含量在不同林分之间差异不显著,而P含量和N∶P差异显著(图2)。例如,毛竹林、竹阔混交林和常绿阔叶林中红楠叶片P含量分别为0.82、0.77、0.63 mg·g-1,N∶P分别为15.55、15.64、21.29,前两者的P含量在阔叶林基础上的增幅分别为30.16%和22.22%,N∶P的降幅分别为26.96%和26.54%。赤杨叶叶片P含量在毛竹林和竹阔混交林中相比阔叶林分别增加了30.00%和13.33%,而N∶P分别下降了20.07%和3.75%。交让木叶片N、P含量在3种群落中差异不显著,而N∶P差异显著,其叶片N∶P在毛竹林、竹阔混交林和阔叶林中分别为15.85、18.11和20.04,即交让木叶片N∶P下降了20.91%(图2)。

2.3 3种林分林下层叶片N、P化学计量特征

灌木层植物叶片N、P化学计量特征的变化不一致,其中油茶、朱砂根和格藥柃的变化较小,红果山胡椒N含量和N∶P发生较大改变(图3)。油茶的叶片N、P含量及N∶P在3种群落中的变化范围分别为9.40~10.82 mg·g-1、0.62~0.69 mg·g-1和14.03~16.81,相对比较稳定。红果山胡椒叶片N含量在毛竹林、竹阔混交林和常绿阔叶林分别为20.86、23.65、24.85 mg·g-1,P含量分别为1.20、1.33、1.15 mg·g-1,叶片N∶P分别为17.38、17.78、21.61,即N含量和N∶P分别下降了16.06%和19.57%,而P含量变化较小。此外,草本层植物(狗脊、寒莓、淡竹叶)叶片N、P含量及比例在3个群落中差异均不显著(图4),即草木层植物N、P化学计量特征在3个林分中的变化较小。

2.4 毛竹叶片N、P化学计量特征

由图5可知,在毛竹向阔叶林扩张过程中,其叶片N、P化学计量特征变化稳定,毛竹林和竹阔混交林叶片N、P含量及N∶P在22.18~24.25 mg·g-1、1.45~1.55 mg·g-1和15.29~15.65变化范围内,平均值分别为23.22、1.50 mg·g-1和15.47。

2.5 竹阔界面植物叶片与土壤N、P化学计量特征的相关性分析

由表1可知,在土壤与植物的关系中,土壤N、P含量与乔木层植物叶片N、P含量及N∶P的关系均不显著,仅土壤N∶P与叶片N∶P呈显著正相关。土壤N含量、N∶P与灌木层植物叶片N、P含量及N∶P关系均不显著,仅土壤P含量与叶片N、P含量均为极显著正相关。土壤N含量与草本层植物叶片P含量、N∶P分别呈极显著正相关、显著负相关;土壤P含量与叶片N、P含量均呈极显著正相关;土壤N∶P与叶片N∶P呈极显著负相关。

3 讨论

3.1 毛竹扩张使土壤N含量下降,P含量上升

本研究发现,毛竹扩张使常绿阔叶林土壤N含量和N∶P显著下降,P含量显著上升,此研究结果与前人研究结果基本相似。Song等(2017)和Li等(2017)发现江西大岗山和江西庐山自然保护区毛竹向邻近阔叶林扩张,减少了土壤总N含量;王奇赞等(2009)比较天目山自然保护区毛竹林、竹阔混交林和阔叶林土壤P含量发现,毛竹林土壤P含量最高(0.42 mg·g-1),混交林次之(0.38 mg·g-1),阔叶林最低(0.34 mg·g-1);Dassonvile等(2008)发现欧洲西北部7种常见植物的入侵显著增加土壤P含量;Chapuis-Lardy等(2006)证实,早生一枝黄花(Solidago gigantea)的扩张提高了土壤表层无机P的含量。土壤中总N、P含量主要取决于输入与输出两个过程。凋落物回归和植物吸收是影响土壤N流动的主要方式。Song等(2017)研究发现,毛竹林凋落物N回归量低于常绿阔叶林,而植物N吸收量显著高于常绿阔叶林,这两个过程会共同导致土壤总N含量减少。土壤P来源于岩石的风化,而土壤N除了受土壤母质的影响外,还受枯落物的分解以及植物吸收利用的影响。因此,P的变化规律与N有一定的差异。毛竹林细根年生长量、周转率均高于常绿阔叶林(刘骏等,2013)。毛竹具有庞大的地下鞭系统、旺盛的细根生物量、较高的根系周转速率,这有利于土壤P积累。土壤酸化会促进P的矿化(周强等,2021)。植物可吸收的无机N主要为NO3--N和NH4+-N,但植物对这两种N形态的利用策略不同。宋庆妮等(2013)研究发现,毛竹具有喜NH4+-N的习性,在其扩张过程中,吸收大量NH4+-N的同时释放出H+,这将导致根系微环境pH值下降,这一变化促进土壤P的风化,使土壤P含量升高。

3.2 毛竹扩张对阔叶林植物叶片N、P化学计量特征的影响

本研究通过分析发现,毛竹扩张使乔木层树种的叶片P含量升高,导致叶片N∶P下降,这与土壤N、P供应变化密切相关。有研究发现,叶片养分含量与土壤养分供应有关(李虹谕等,2021;陈小花等,2021)。Fan等(2015)的研究结果表明,在亚热带森林生态系统内,土壤与植物的N∶P显著相关。邬畏(2010)研究发现土壤N∶P的变化是植物体内N∶P变化的基础。项琦(2021)指出,互花米草(Spartina alterniflora)入侵改变了土壤N、P化学循环,从而导致植株N、P含量及生态化学计量特征也随之改变,并存在入侵时间越长,土壤与植株养分元素含量及计量比的相关性越高的规律。本研究中,虽然毛竹扩张降低了土壤N含量,但是乔木层植物叶片N含量变化较小,这可能是因为植物N含量具有更高的自我调控系数,表现出较强的化学内稳态(李贵才等,2003)。Koerselman和Meuleman(1996)提出,当植物N∶P<14时,植物生长倾向于受到N限制;当植物N∶P>16时,植物生长倾向于受到P限制;当植物N∶P处于14~16时,植物生长可能受到N和P的共同限制或不受它们的限制。在本研究中,乔木层植物叶片N∶P均大于16,因此,乔木层植物生长倾向于受到P限制。本研究发现,毛竹扩张增加了土壤P含量。Perring等(2008)表示土壤养分差异对植物化学计量特征具有重要影响,即土壤P含量增加可提高P的可利用性,以此促进受P限制植物的生长,增加其组织内的P浓度以维持正常生理活动,这是叶片P含量增加而N∶P降低的原因之一。通过分析土壤与乔木层植物叶片化学计量特征之间的关系发现,叶片P含量与土壤P含量呈显著负相关,这与Garnier(1998)的研究结果不一致,他认为若植物生长受某元素限制,其叶片相应元素含量会与土壤对该养分的供应能力呈正相关。本研究对象为自然保护区常绿阔叶林,植物组成多样,群落结构复杂,不适于用具体物种的研究结果来解释。

本研究发现,与乔木层植物叶片不同,毛竹向阔叶林扩张对灌木层大部分植物和草本层植物的化学计量特征影响不明显。以往许多研究表明灌木及草本植物N、P化学计量内稳性较高,受土壤供给的影响相对较小(罗艳等,2017;勒佳佳等;2020;阿里木·买买提等,2022)。冶松(2021)研究草本植物N含量对N添加的响应发现,草本植物叶片N含量在不同N处理间均无显著差异。张亚琴等(2022)表示,马尾松(Pinus massoniana)林下4种灌木植物化学计量特征主要受自身遗传影响,与土壤N、P含量及其比例无显著关系。李家湘等(2017)表示,中国南方灌丛植物叶的N含量主要由不同生活型植物生长需求决定,而P含量受气候、土壤和植物生活型共同决定。郭子豪等(2021)指出,植物的N可能更倾向于是一种物种性状,与土壤养分无关。因此,毛竹扩张对灌木层大部分植物和草本层植物自身化学计量特征影响较小的原因可能是N、P含量及其比例是灌木与草本植物自身固有的性状特征,它们对外界土壤N、P的变化响应不敏感。

3.3 毛竹扩张中其自身叶片的N∶P较稳定

本研究发现,毛竹在扩张过程中其自身叶片的N、P化学计量特征变化不大,这与他人的研究结果一致。程艳艳(2014)在对毛竹及其入侵林分主要优势树种的N、P添加试验中表明,毛竹的内稳性指数在各物种中最高。这可能与毛竹與克隆植物具强大的养分生理整合功能密切相关(赵建诚等,2016)。Li等(2000)发现未施肥地段的竹笋通过生理整合作用从施肥地段的母竹中吸收养分,实现了资源共享。石艳等(2015)表示在生境资源丰富时,克隆植物利用具有营养贮藏功能的连接结构可以吸收储存多余的资源,在资源缺乏季节释放以供植株利用,这样可使克隆植物生长受异质性环境的影响降低。生理整合功能使毛竹与其他阔叶树在争夺水、光、空间等资源时始终保持自身稳定状态,获得更大的优势,从而有助于其成功入侵周边的森林生态系统。

4 结论

毛竹向邻近常绿阔叶林扩张会导致土壤P含量显著升高及土壤N∶P显著下降。土壤N∶P的大幅下降对乔木层、灌木层和草本层3层植物叶片N、P化学计量特征的影响不一致。灌木层和草本层植物由于具有较强的内稳性,因此受毛竹扩张引起的土壤异质性的影响并不显著。然而,乔木层植物叶片P的内稳性较低,受土壤P变化影响较大,导致乔木层植物N、P化学特征失衡,不利于其正常生长。在扩张过程中,毛竹自身叶片N、P化学计量特征保持稳定,这可能成为毛竹能够成功扩张,并对乔木层树种的生存构成威胁的重要原因。

参考文献:

ALIM·MAMAT, LI X, KAHLMAN·CHAYIZADAN, et al., 2022. Nutrient and stoichiometric characteristics of dominant herbaceous in spruce forests on the northern slope of Tianshan Mountains [J]. J NW For Univ, 37(2): 68-74.[阿里木·买买提, 李翔, 卡哈尔曼·恰依扎旦, 等, 2022. 天山云杉林下优势草本植物化学计量内稳性特征 [J]. 西北林学院学报, 37(2): 68-74.]

BAI SB, ZHOU GM, WANG YX, et al., 2013. Plant species diversity and dynamics in forests invaded by Moso bamboo (Phyllostachys edulis) in Tianmu Mountain Nature Reserve [J]. Biodivers Sci, 21(3): 288-295.[白尚斌, 周国模, 王懿祥, 等, 2013. 天目山保护区森林群落植物多样性对毛竹入侵的响应及动态变化 [J]. 生物多样性, 21(3): 288-295.]

CHAPUIS-LARDY L, VANDERHOEVEN S, DASSONVILLE N, et al., 2006. Effect of the exotic invasive plant Solidago gigantea on soil phosphorus status [J]. Biol Fert Soils, 42(6): 481-489.

陈才榜, 2022. 毛竹纯林与竹阔混交林土壤肥力比较研究 [J]. 安徽农学通报, 28(4): 68-69.

CHEN TT, XU H, YANG Q, et al., 2018. Spatial distribution characteristics of an evergreen broad-leaved forest in the Wuyi Mountains, Fujian Province, southeastern China [J]. Acta Ecol Sin, 38(5): 1817-1825.[陈婷婷, 徐辉, 杨青, 等, 2018. 武夷山常绿阔叶林空间结构参数分布特征 [J]. 生态学报, 38(5): 1817-1825.]

CHEN W, WANG JH, CHEN XY, et al., 2020. The carbon, nitrogen and phosphorus stoichiometric characteristics of invasive species Rhynchelytrum repens and their nutrition strategy [J]. J Ecol Rural Environ, 36(10): 1293-1300.[陈文, 王桔红, 陈晓芸, 等, 2020. 入侵植物红毛草碳、氮、磷化学计量特征及其营养策略 [J]. 生态与农村环境学报, 36(10): 1293-1300.]

CHEN XH, CHEN ZZ, WU TT, et al., 2021. C, N and P stoichiometric characteristics of leaf and soil for two typical forest in Hainan Island [J]. For Environ Sci, 37(5): 102-108.[陈小花, 陈宗铸, 吴庭天, 等, 2021. 海南岛不同林分植物叶片-土壤生态化学计量特征 [J]. 林业与环境科学, 37(5): 102-108.]

CHEN YH, HAN WX, TANG LY, et al., 2005. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China [J]. New Phytol, 168(2): 377-385.

CHENG YY, 2014. Study on the relationship between stoichiometric homeostasis and stability of forest ecosystem invaded by Moso bamboo [D]. Hangzhou: Zhejiang A & F University: 1-48.[程艳艳, 2014. 化学计量内稳性与毛竹入侵生态系统稳定性关系的研究 [D]. 杭州: 浙江農林大学: 1-48.]

DASSONVILLE N, VANDERHOEVEN S, VANPARYS V, et al., 2008. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe [J]. Oecologia, 157(1): 131-140.

FAN HB, WU JP, LIU WF, et al., 2015. Linkages of plant and soil C∶N∶P stoichiometry and their relationships to forest growth in subtropical plantations [J]. Plant Soil, 392(1/2): 127-138.

GUO ZH, ZHU XW, CHEN QW, et al., 2021. Ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in main shrubs in central Yunnan [J]. J For Environ, 41(4): 358-365. [郭子豪, 朱秀雯, 陈钱炜, 等, 2021. 滇中地区主要灌丛碳氮磷生态化学计量特征 [J]. 森林与环境学报, 41(4): 358-365.]

GARNIER E, 1998. Population biology of grasses: interspecific variation in plasticity of grasses in response to nitrogen supply [M]. Cambridge: Cambridge University Press: 155-181.

HUANG YR, GAO W, HUANG SD, et al., 2021. Ecostoichiometric characteristics of carbon, nitrogen and phosphorus in Fujian evergreen broad-leaved forest [J]. Acta Ecol Sin, 41(5): 1991-2000.[黄雍容, 高伟, 黄石德, 等, 2021. 福建三种常绿阔叶林碳氮磷生态化学计量特征 [J]. 生态学报, 41(5): 1991-2000.]

JIANG L, XU ZF, WU FZ, et al., 2019. Stoichiometric characteristics of C, N, and P in soil and plant leaves in three typical evergreen forest types in subtropical zone [J]. Chin J Appl Environ Biol, 25(4): 759-767.[蒋龙, 徐振锋, 吴福忠, 等, 2019. 亚热带3种典型常绿森林土壤和植物叶片碳氮磷化学计量特征 [J]. 应用与环境生物学报, 25(4): 759-767.]

KOERSELMAN W, MEULEMAN AFM, 1996. The vegetation N∶P ratio: a new tool to detect the nature of nutrient limitation [J]. J Appl Ecol, 33(6): 1441-1450.

LE JJ, SU Y, LUO Y, et al., 2020. Effects of enclosure on leaves of four plants and soil stoichiometry in an alpine grassland of Tianshan Mountains [J]. Acta Ecol Sin, 40(5): 1621-1628.[勒佳佳, 蘇原, 罗艳, 等, 2020. 围封对天山高寒草原4种植物叶片和土壤化学计量学特征的影响 [J]. 生态学报, 40(5): 1621-1628.]

LI GC, HAN XG, HUANG JH, et al., 2003. Dynamics of soil inorganic nitrogen in middle mountain moist evergreen broadleaf forest under different disturbance intensities in Ailao Mountain [J]. Chin J Appl Ecol, 14(8): 1251-1256.[李贵才, 韩兴国, 黄建辉, 等, 2003. 哀牢山中山湿性常绿阔叶林不同干扰强度下土壤无机氮的变化 [J]. 应用生态学报, 14(8): 1251-1256.]

LI HY, YANG HX, BAI RF, et al., 2021. Advances research of ecological stoichiometry characteristics in terrestrial plants: a review [J]. Liaoning For Sci Technol, (5): 66-68.[李虹谕, 杨会侠, 白荣芬, 等, 2021. 陆地植物生态化学计量学特性研究进展 [J]. 辽宁林业科技, (5): 66-68.]

LI JX, XU WT, XIONG GM, et al., 2017. Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrub lands across southern China [J]. Chin J Plant Ecol, 41(1): 31-42.[李家湘, 徐文婷, 熊高明, 等, 2017. 中国南方灌丛优势木本植物叶的氮、磷含量及其影响因素 [J]. 植物生态学报, 41(1): 31-42.]

LI R, WERGER MJA, KROON HD, et al., 2000. Interactions between shoot age structure, nutrient availability and physiological integration in the giant bamboo Phyllostachys pubescens [J]. Plant Biol, 2(4): 437-446.

LI WC, SHENG HY, CHEN WJ, et al., 2018. Variation of soil bacterial diversity after the invasion of Phyllostachys edulis into Pinus massoniana forest [J]. Chin J Appl Ecol, 29(12): 3969-3976. [李伟成, 盛海燕, 陈伟杰, 等, 2018. 毛竹入侵马尾松林的土壤菌群多样性变化 [J]. 应用生态学报, 29(12): 3969-3976.]

LI ZZ, ZHANG L, DENG BL, et al., 2017. Effects of moso bamboo (Phyllostachys edulis) invasions on soil nitrogen cycles depend on invasion stage and warming [J]. Environ Sci Pollut Res Int, 24(32): 24989-24999.

LIU C, WANG Y, WANG N, et al., 2012. Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: a review [J]. Chin J Plant Ecol, 36(11): 1205-1216.[刘超, 王洋, 王楠, 等, 2012. 陆地生态系统植被氮磷化学计量研究进展 [J]. 植物生态学报, 36(11): 1205-1216.]

LIU CW, ZHENG XL, WANG JH, et al., 2017. Reviews on ecological stoichiometry characteristics of CNP in terrestrial and aquatic plants [J]. Chin Agric Sci Bull, 33(17): 70-75.[刘岑薇, 郑向丽, 王俊宏, 等, 2017. 陆生和水域生态系统植物的C、N、P生态化学计量特征研究综述 [J]. 中国农学通报, 33(17): 70-75.]

LIU J, YANG QP, YU DK, et al., 2013. Contribution of fine root to soil nutrient heterogeneity at two sides of the bamboo and broad-leaved forest interface [J]. Chin J Plant Ecol, 37(8): 739-749.[刘骏, 杨清培, 余定坤, 等, 2013. 细根对竹林-阔叶林界面两侧土壤养分异质性形成的贡献 [J]. 植物生态学报, 37(8): 739-749.]

LIU J, YANG QP, SONG QN, et al., 2013. Strategy of fine root expansion of Phyllostachys pubescens population into evergreen broad-leaved forest [J]. Chin J Plant Ecol, 37(3): 230-238.[劉骏, 杨清培, 宋庆妮, 等, 2013. 毛竹种群向常绿阔叶林扩张的细根策略 [J]. 植物生态学报, 37(3): 230-238.]

LIU XY, 2020. Effects of bamboo invasion on C, N, P, Si reserves and stoichiometry of evergreen boradleaved forests [D]. Fuzhou: Fujian Agricultural and Forestry University: 1-64.[刘小玉, 2020. 毛竹向常绿阔叶林扩张对碳氮磷硅储量及其化学计量特征影响研究 [D]. 福州: 福建农林大学: 1-64.]

LU RK, 2000. Methods of soil agricultural chemistry analysis [M]. Beijing: Chinese Agricultural Science and Technology Press: 146-185.[鲁如坤, 2000. 土壤农业化学分析方法 [M]. 北京: 中国农业出版社: 146-185.]

LUO Y, GONG L, ZHU ML, et al., 2017. Stoichiometry characteristics of leaves and soil of four shrubs in the upper reaches of the Tarim River Desert [J]. Acta Ecol Sin, 37(24): 8326-8335. [罗艳, 贡璐, 朱美玲, 等, 2017. 塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征 [J]. 生态学报, 37(24): 8326-8335.]

OKUTOMI K, SHINODA S, FUKUDA H, et al., 1996. Causal analysis of the invasion of broad-leaved forest by bamboo in Japan [J]. J Veg Sci, 7(5): 723-728.

OUYANG M, YANG QP, CHEN X, et al., 2016. Effects of the expansion of Phyllostachys edulis on species composition, structure and diversity of the secondary evergreen broad-leaved forests [J]. Biodivers Sci, 24(6): 649-657.[欧阳明, 杨清培, 陈昕, 等, 2016. 毛竹扩张对次生常绿阔叶林物种组成、结构与多样性的影响 [J]. 生物多样性, 24(6): 649-657.]

PERRING MP, HEDIN LO, LEVIN SA, et al., 2008. Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems [J]. Proc Natl Acad Sci USA, 105(6): 1971-1976.

SHI Y, LI Y, MAO SL, et al., 2015. Ecological consequences of clonal integration in plants [J]. Shaanxi For Sci Technol, (5): 76-80.[石艳, 李阳, 毛少利, 等, 2015. 植物克隆整合的生态学效应研究概述 [J]. 陕西林业科技, (5): 76-80.]

SONG QN, LU H, LIU J, et al., 2017. Accessing the impacts of bamboo expansion on NPP and N cycling in evergreen broadleaved forest in subtropical China [J]. Sci Rep, 7: 40383.

SONG QN, YANG QP, LIU J, et al., 2013. Effects of Phyllostachys edulis expansion on soil nitrogen mineralization and its availability in evergreen broadleaf forest [J]. Chin J Appl Ecol, 24(2): 338-344.[宋庆妮, 杨清培, 刘骏, 等, 2013. 毛竹扩张对常绿阔叶林土壤氮素矿化及有效性的影响 [J]. 应用生态学报, 24(2): 338-344.]

TONG R, ZHOU BZ, JIANG LN, et al., 2019. Influence of Moso bamboo invasion on forest plants and soil: a review [J]. Acta Ecol Sin, 39(11): 3808-3815.[童冉, 周本智, 姜丽娜, 等, 2019. 毛竹入侵对森林植物和土壤的影响研究进展 [J]. 生态学报, 39(11): 3808-3815.]

WANG HY, DING R, WANG ZH, et al., 2020. Effects of nitrogen and phosphorus addition on C∶N∶P ecological stoichiometry in leaves and roots of different canopy species in Hulunbuir grassland [J]. Acta Pratac Sin, 29(8): 37-45.[王洪义, 丁睿, 王智慧, 等, 2020. 氮、磷添加对草地不同冠层植物叶片和根系生态化学计量特征的影响 [J]. 草业学报, 29(8): 37-45.]

WANG QZ, XU QF, JIANG PK, et al., 2009. DGGE analysis of PCR of 16S rDNA V3 fragments of soil bacteria community in soil under natural broadleaf forest invaded by Phyllostachys pubescens in Tianmu Mountain Nature Reserve [J]. Acta Pedol Sin, 46(4): 662-669.[王奇贊, 徐秋芳, 姜培坤, 等, 2009. 天目山毛竹入侵阔叶林后土壤细菌群落16S rDNA V3区片段PCR的DGGE分析 [J]. 土壤学报, 46(4): 662-669.]

WU W, 2010. Primary study on influence of soil N/P ratio on plants [D]. Tianjin: Nankai University: 1-67.[邬畏, 2010. 土壤氮/磷比对植物影响的初步研究 [D]. 天津: 南开大学: 1-67.]

XIANG L, CHEN FQ, GENG MY, et al., 2019. Response of leaf functional traits of shrubs to altitude in Rhododendron latoucheae communities in Mt. Jinggangshan, Jiangxi, China [J]. J Trop Subtrop Bot, 27(2): 129-138.[向琳, 陈芳清, 耿梦娅, 等, 2019. 井冈山鹿角杜鹃群落灌木层植物叶功能性状对海拔梯度的响应 [J]. 热带亚热带植物学报, 27(2): 129-138.]

XIANG Q, 2021. Effects of Spartina alterniflora invasion on ecological stoichiometry characteristics of soil and plant carbon, nitrogen and phosphorus in Tidal Flat Wetlands, Hangzhou Bay [D]. Jinhua: Zhejiang Normal University: 1-80.[项琦, 2021. 互花米草入侵对杭州湾潮滩湿地土壤及植物碳、氮、磷生态化学计量特征的影响 [D]. 金华: 浙江师范大学: 1-80.]

YANG QF, XIONG Y, YU ZP, et al., 2021. Characteristics of soil active nitrogen fractions in evergreen broad-leaved forests at different altitudes in Guanshan mountain of eastern China [J]. J Cent S Univ For Technol, 41(9): 138-147.[杨起帆, 熊勇, 余泽平, 等, 2021. 江西官山不同海拔常绿阔叶林土壤活性氮组分特征 [J]. 中南林业科技大学学报, 41(9): 138-147.]

YANG QP, YANG GY, SONG QN, et al., 2015. Ecological studies on bamboo expansion: process, consequence and mechanism[J]. Chin J Plant Ecol, 39(1): 110-124.[杨清培, 杨光耀, 宋庆妮, 等, 2015. 竹子扩张生态学研究:过程、后效与机制 [J]. 植物生态学报, 39(1): 110-124.]

YING W, JIN JX, JIANG H, et al., 2016. Satellite-based detection of bamboo expansion over the past 30 years in Mount Tianmushan, China [J]. Int J Remot Sens, 37(13): 2908-2922.

YE S, 2021. Response of carbon, nitrogen and phosphorus distribution of herbaceous plants in natural secondary forest to nitrogen addition [D]. Harbin: Heilongjiang University: 1-62.[冶松, 2021. 天然次生林草本植物碳氮磷分配對氮添加的响应 [D]. 哈尔滨: 黑龙江大学: 1-62.]

ZHANG JP, ZHANG LB, WANG FY, et al., 2014. Spatial variation of soil nutrient contents in the Jinggangshan National Nature Reserve [J]. Soils, 46(2): 262-268.[张继平, 张林波, 王风玉, 等, 2014. 井冈山国家级自然保护区森林土壤养分含量的空间变化 [J]. 土壤, 46(2): 262-268.]

ZHAO JC, LIU GL, FAN SH, et al., 2016. Clonal growth of whip bamboo and its influence on adjacent system [J]. World For Res, 29(1): 24-28. [赵建诚, 刘广路, 范少辉, 等, 2016. 鞭生竹克隆生长及其对相邻系统的影响 [J]. 世界林业研究, 29(1): 24-28.]

ZHANG K, LI MM, SU YZ, et al., 2020. Stoichiometry of leaf carbon, nitrogen, and phosphorus along a geographic,climatic,and soil gradients in temperate desert of Hexi Corridor, northwest China [J]. J Plant Ecol, 13(1): 114-121.

ZHANG YQ, GUO QQ, LUO SQ, et al., 2022. Stoichiometry characteristics of leaves and soil of four shrubs under Pinus massoniana plantations [J]. J Cent S Univ For Technol, 42(1): 129-137.[张亚琴, 郭其强, 罗丝琼, 等, 2022. 马尾松林下4种灌木植物叶片与土壤生态化学计量特征 [J]. 中南林业科技大学学报, 42(1): 129-137.]

ZHAO YH, FAN SH, LUO JD, 2017. The influence of Phyllostachys edulis expanding into evergreen broadleaf forest on soil property and its related analysis [J]. For Res, 30(2): 354-359.[赵雨虹, 范少辉, 罗嘉东, 2017. 毛竹扩张对常绿阔叶林土壤性质的影响及相关分析 [J]. 林业科学研究, 30(2): 354-359.]

ZHOU Q, JIANG YB, HAO JH, et al., 2021. Advances in the study of biogeochemical cycles of phosphorus [J]. Geol J Chin Univ, 27(2): 183-199.[周强, 姜允斌, 郝记华, 等, 2021. 磷的生物地球化学循环研究进展 [J]. 高校地质学报, 27(2): 183-199.]

(责任编辑 邓斯丽 李 莉)

猜你喜欢

阔叶林毛竹林毛竹
自然封育条件下毛竹林内凋落物及土壤持水能力变化研究
节骨草和毛竹苗
亚热带常绿阔叶林的世界之窗 钱江源,探路国家公园
毛竹林经营投入产出关系与经营效益的相关性研究
阔叶林培育及保护对策
不同坡位对毛竹林小气候及地上生长的影响
毛竹护笋养竹技术探讨
毛竹幼林四季管理技术
台风干扰对天童常绿阔叶林凋落物量的影响