APP下载

甜荞花青素合成相关基因FeR2R3-MYB的克隆与表达分析

2023-08-20熊泽浩罗旖柔许嘉盛曹艳朱旭东贾宝森徐锐方正武

广西植物 2023年7期
关键词:转录因子表达分析生物信息学

熊泽浩 罗旖柔 许嘉盛 曹艳 朱旭东 贾宝森 徐锐 方正武

摘 要:  MYB 是一类常见的转录因子,广泛参与植物花青素生物合成的调控。为探究 MYB转录因子在甜荞花青素生物合成中的调控作用,该研究从甜荞品种红花甜荞和北早生的转录组学数据中筛选并克隆出一个和花青素生物合成相关的MYB基因,将其命名为 FeR2R3-MYB,GenBank 登录号为 MT151381.1,并对该序列进行生物信息学分析,以及利用 qRT-PCR 分析FeR2R3-MYB基因在北早生和红花甜荞中的表达特征。结果表明:(1)FeR2R3-MYB基因全长 831 bp,编码 276 个氨基酸,蛋白的相对分子质量为 30.95 kD,理论等电点(pI)为  8.73,蛋白的不稳定指数为 69.64,属于不稳定蛋白,总疏水值为-0.679,整条肽链呈现亲水特性。(2)FeR2R3-MYB 具有典型的 R2R3-MYB 结构域,属于 R2R3-MYB 亚家族。(3)FeR2R3-MYB 与同属蓼科的苦荞麦和虎杖亲缘关系比较近。(4)FeR2R3-MYB 的启动子序列共含有 9 个光照响应元件、12个转录因子结合位点、4 个非生物响应元件和 2 个激素响应元件。(5)亚细胞定位发现 FeR2R3-MYB 只在细胞核中表达。(6)FeR2R3-MYB 基因的表达量在叶片和花序中红花甜荞均高于北早生,推测 FeR2R3-MYB 基因可以正向调节甜荞花青素生物合成。综上所述,该研究结果为进一步深化  FeR2R3-MYB 基因在甜荞花青素生物合成途径中的功能及表达调控方面的研究提供了理論基础。

关键词: 甜荞,  MYB 转录因子, 生物信息学, 亚细胞定位, 表达分析

中图分类号:  Q943

文献标识码:  A

文章编号:  1000-3142(2023)07-1287-09

收稿日期:  2022-09-12

基金项目:  国家自然科学基金(31671755,31571736)。

第一作者: 熊泽浩(1996-),硕士研究生,主要从事作物遗传育种研究,(E-mail)xiongzehao6@126.com。

通信作者:  方正武,博士,教授,主要从事麦类种质资源创新与利用研究,(E-mail)fangzhengwu88@163.com。

Cloning and expression analysis of FeR2R3-MYB of

anthocyanin synthesis-related genes of common buckwheat

XIONG Zehao, LUO Yirou, XU Jiasheng, CAO Yan, ZHU Xudong,

JIA Baosen, XU Rui, FANG Zhengwu*

( College of Agriculture, Yangtze University/Collaborative Innovation Center for the Industrialization

of Major Food Crops, Jingzhou 434025, Hubei, China )

Abstract:  MYB is a common transcription factors widely involved in the regulation of anthocyanidin biosynthesis. In order to explore the regulatory role of MYB transcription factors in the biosynthesis of common buckwheat anthocyanidins, we screened and cloned a MYB gene associated with anthocyanin biosynthesis from the transcriptomic data of common buckwheat varieties of safflower common buckwheat and Beizaosheng, and named it FeR2R3-MYB, GenBank login number was MT151381.1. The sequence was analyzed by bioinformatics analysis and qRT-PCR was used to analyze the expression characteristics of FeR2R3-MYB gene in Beizaosheng and safflower common  buckwheat. The results were as follows: (1) FeR2R3-MYB gene was 831 bp in total length, encoding 276 amino acids. The relative molecular mass of the protein was 30.95 kD, the theoretical isoelectric point (pI) was 8.73, and the instability index of the protein was 69.64, which belonged to the unstable protein. The total hydrophobic value was -0.679, and the whole peptide chain showed hydrophilic characteristics. (2) FeR2R3-MYB had a typical R2R3-MYB domain and belonged to the R2R3-MYB subfamily. (3) FeR2R3-MYB was closely related to common buckwheat and knotweed, belonging to the same family. (4) The promoter sequence of FeR2R3-MYB contained a total of nine light corresponding elements, 12 transcription factor binding sites, four abiotic corresponding elements and two hormone response elements. (5) Subcellular localization found that FeR2R3-MYB was only expressed in the nucleus. (6) The expression of FeR2R3-MYB gene of safflower common buckwheat was higher than that of Beizaosheng in leaves and inflorescences, and it was further speculated that FeR2R3-MYB gene could positively regulate the biosynthesis of common buckwheat anthocyanin. In summary, these results lay a foundation for further deepening the research on the function and expression regulation of FeR2R3-MYB gene in the biosynthetic pathway of common buckwheat anthocyanin.

Key words: common buckwheat, MYB transcription factor, bioinformatics, subcellular location, expression analysis

花青素(anthocyanin)属于类黄酮物质,是一类广泛存在于植物中的水溶性色素。在自然界中,花青素主要以糖苷化和酰基化的方式存在,不同的结合方式形成了品类众多的花色苷,其中常见的有6种:天竺葵色素、矢车菊色素、飞燕草色素、芍药色素、矮牵牛色素和锦葵色素(侯泽豪等,2017)。花青素在植物中具有广泛功能,包括吸引传粉者、保护植物免受紫外线伤害、防御食草动物、防御病原体攻击以及抵抗微生物。作为一种安全、无毒的天然食用色素,花青素能够预防人类心血管疾病,具有抗肿瘤、抗突变和辐射、调节血小板活性、防血小板凝结和调节免疫活性等功效,对人类健康有巨大的潜在价值(Tanaka et al., 2008)。

在植物界中,MYB 家族广泛参与植物发育、抗病、次生代谢和其他生理过程。MYB 家族成员大多具有共同特征,其 N 端含有一段保守的 DNA 结合域(DNA-binding domain),C 端则是负责蛋白質活性的调节(Ogata et al., 1996)。MYB 的结构域共有3种,分别是 R1、R2、R3,R 结构由 50 个左右的氨基酸组成,在三维空间中构成 3 个 α-螺旋,其中第 2 个和第 3 个 α-螺旋形成螺旋-转角-螺旋结构,与第 1 个α 螺旋形成一个具有疏水核心的三维 HTH 结构域, MYB 转录因子通过该结构与 DNA 结合(牛义岭等,2016)。根据结构域的数量, MYB 转录因子可以分成4个基因亚家族:1R-MYB、R2R3-MYB、R1R2R3-MYB 和 4R-MYB(钱景华等,2016)。Paz-Ares 等(1987)在玉米(Zea mays)中发现了植物的第1个 MYB 基因,并命名为 ZmMYBC1,初步研究发现该基因与玉米花青素合成相关。之后的研究中,人们陆续地从马铃薯(Solanum tuberosum)、苹果(Malus pumila)、番茄(Solanum lycopersicum)和小麦(Triticum aestivum)等多种植物中克隆出调控花青素合成的 MYB 转录因子,其中以 R2R3-MYB 亚家族为主(Ballester et al., 2010; Chagné et al., 2013; 叶广继等,2016; 刘旭婷等,2019)。R2R3-MYB 转录因子的调节发生在花青素生物合成的不同阶段。例如,紫苏(Perilla frutescens )中的 R2R3-MYB 转录因子参与花青素生物合成的所有结构基因(Saito & Yamazaki, 2002)。葡萄(Vitis vinifera)中的 MYBA 专门调节花青素合成下游的结构基因(Kobayashi et al., 2002)。已知的 MYB 转录因子对花青素生物合成多以正向调节为主,也有少量 MYB 转录因子对花青素的生物合成起负调节作用。Wang 等(2021)从褪色的菊花(Chrysanthemum morifolium )中克隆出 CmMYB21 基因,并对其进行功能鉴定,发现 CmMYB21 通过结合启动子抑制了 CmDFR 的表达,导致花青素合成受到抑制,如金鱼草(Antirrhinum majus)中的AtMYB308、牵牛花(Pharbifis nil)中的 PhMYB27 等(Tamagnone et al., 1989; Albert et al., 2014)。

本课题组通过杂交选育获得一份富含花青素的甜荞(Fagopyrum esculentum)新品种,命名为红花甜荞(HHTQ),通过与白花的甜荞品种(北早生)进行转录组学对比分析,挖掘了一批控制甜荞花青素合成的候选基因(Fang et al., 2019)。本研究从 HHTQ 中克隆了调控花青素生物合成的候选基因 FeR2R3-MYB,并通过生物信息学的方法,从基因结构、系统发育进化树、多序列比对、功能结构域分析和启动子顺式作用元件等方面对该基因的基本特征进行全面的预测分析,以及通过亚细胞定位和 qRT-PCR 研究了 FeR2R3-MYB基因的表达特征和组织表达模式,为进一步探究 FeR2R3-MYB基因在荞麦花青素生物合成过程中的功能提供了理论依据。

1 材料与方法

1.1 材料

所选材料品种为红花甜荞(HHTQ)和北早生,种于长江大学农学院实验基地,采用常规大田管理。待荞麦生长至第5个星期时,取其叶片和花序保存于 -80 ℃ 冰箱中备用。

1.2 甜荞 FeR2R3-MYB基因的克隆

利用 RNA 试剂盒(北京艾德莱生物科技有限公司)提取 HHTQ 叶片的总 RNA,利用反转录试剂盒(宝日医生物技术有限公司)合成 cDNA。根据本实验室前期转录组学数据得到的 MYB 序列,通过 NCBI 进行 Primer Blast 设计特异性引物(表 1),PCR 扩增出 FeR2R3-MYB 序列,构建克隆载体后送至北京擎科技术有限公司进行 DNA 测序。

1.3 甜荞 FeR2R3-MYB 基因的生物信息学分析

测序得到序列后,利用ApE(A plasmid Editor) 软件分析FeR2R3-MYB 基因的开放式阅读框和预测其编码的氨基酸序列;利用在线网站 ExPASy (https://web.expasy.org/protparam )预测蛋白等电点和相对分子质量;利用在线网站 ProtScale 分析蛋白的疏水性/亲水性;利用 FoldIndex 程序对 FeR2R3-MYB 蛋白进行无序化预测;利用软件NPS@(https://npsa-prabi.ibcp.fr/)预测 FeR2R3-MYB 蛋白二级结构;利用 SWISS-MODEL(https://swissmodel.expasy.org/)预测 FeR2R3-MYB 蛋白三级结构;利用在线软件 PlantCARE (http://bioinformatics.psb.ugent.be/software) 预测启动子中的顺式作用元件;利用 NCBI 进行 Protein Blast 搜索同源序列,将同源序列用 MEGA X 软件构建进化树,采用的方法为邻接法,设置重复次数(bootstrap)为 1 000 次。

1.4 甜荞 FeR2R3-MYB 蛋白的亚细胞定位

利用 BioXM 2.6 软件和 DNMAN 软件设计特异性引物 FeR2R3-MYBF-F1 和 FeR2R3-MYBF-R1(表 1 )。运用 PCR 扩增FeR2R3-MYB基因,经 Xho Ⅰ 和 Avr Ⅱ 限制性内切酶双酶切,胶回收酶切片段,将回收片段与 pHZM27 载体连接,转化 DH5α,提取质粒 35S∷FeR2R3-MYB-GFP。使用农杆菌感受态细胞 GV3101,转化重组质粒,送至北京擎科技术有限公司进行测序,备用。取4~5叶龄的烟草,利用注射法转化烟草。将注射后的烟草放置 48~72 h,利用激光共聚焦显微镜观察荧光信号。

1.5 qRT-PCR 分析 FeR2R3-MYB 基因的表达差异

提取叶片和花序的总 RNA,利用 cDNA 进行实时荧光定量 PCR (qRT-PCR),检测FeR2R3-MYB 基因在红花甜荞(HHTQ)和北早生不同部位的表达模式。使用 Primer 进行特异性引物设计,上、下游特异性引物分别为 FeR2R3-MYB-F2/ FeR2R3-MYB-R2(表 1); qRT-PCR 检测所用的阳性对照内参基因为甜荞的ACTIN基因(GenBank 登录号: HQ398855.1),检测特异性引物分别为QFeACTIN-F 和 QFeACTIN-R(表 1)。采用两步法 PCR 扩增程序,使用 2-ΔΔCt 法计算表达量,用 SPSS 19.0软件对数据进行显著性分析,用 Excel 2003软件作图。

2 结果与分析

2.1 甜荞 FeR2R3-MYB基因的克隆

以 HHTQ 的 cDNA 为模板,利用引物 FeR2R3-MYB-F/ FeR2R3-MYB-R 进行扩增,用 10 g·L-1 的琼脂糖凝胶电泳对 PCR 产物进行检测,获得一条 900 bp 左右的 PCR 产物,如图 1 所示。测序结果显示该片段大小为 873 bp,利用 APE 软件分析序列,发现含有 831 bp 的开放阅读框,编码 276 个氨基酸。通过 BLAST 同源性搜索,结果显示其序列与苦荞麦FtMYB15(KY290581.1)的相似性高达97%,将该基因命名为 FeR2R3-MYB,GenBank 登录号为 MT151381.1。

2.2  FeR2R3-MYB基因编码蛋白理化性质的预测

通过在线软件 ExPASy 预测到 FeR2R3-MYB 基因编码蛋白的相对分子质量为 30.95 kD,理论等电点(pI)为 8.73,蛋白的分子式为C1342H2134N400O412S15。其中甘氨酸(Gly)、亮氨酸(Leu)的含量最高,为 9.1%,其次为丝氨酸(Ser)的8.3%、谷氨酸(Glu)的7.6%,尿蛋氨酸(Met)的含量最少,为 1.4%。蛋白的不稳定指数为 69.64,推测 FeR2R3-MYB 属于不稳定蛋白。ProtScale 在线软件分析蛋白的疏水性/亲水性,结果表明,FeR2R3-MYB 亲水区域大于疏水区域,总疏水值为-0.679,疏水最大值为1.811,亲水最大值为-2.711,整條肽链呈现亲水特性。

2.3 FeR2R3-MYB 蛋白的无序性分析和二级、三级结构预测

通过 FoldIndex程序对 FeR2R3-MYB 蛋白进行无序化预测分析,该蛋白整个氨基酸序列中有9个无序化区域,共有碱基 151 个,无序化比率为 54.71%。利用软件 NPS@ 预测 FeR2R3-MYB 蛋白二级结构,结果表明,FeR2R3-MYB 蛋白由 26.81%的 α-螺旋、10.51% 的延伸链、5.07% 的β-转角和 57.61%的无规则卷曲组成。利用 SWISS-MODEL 预测 FeR2R3-MYB 蛋白三级结构,如图 2 所示,FeR2R3-MYB 蛋白三级结构以 α-螺旋和无规则卷曲为主,与二级结构预测结构基本相同。

2.4 FeR2R3-MYB 基因编码蛋白的氨基酸序列比对及进化分析

将 FeR2R3-MYB 蛋白序列在 NCBI 数据库中进行 Protein Blast 搜索,筛选出 15 个植物蛋白序列,用 MEGA 7.0 构建系统进化树。如图 3 所示,甜荞的 FeR2R3-MYB 与苦荞麦(APZ74340.1)、虎杖(AQY56676.1)、拟南芥(NP_195574.1)和蔷薇杂交种(AID23891.1)的亲缘关系较近,苦荞麦和虎杖与甜荞同属蓼科植物,这些亲缘关系符合植物形态学分类及进化规律。FeR2R3-MYB 在荞麦和虎杖中有较高同源性,推测 FeR2R3-MYB 基因在双子叶蓼科植物中存在着较高的保守性。

通过 DNAMAN 6.0 对FeR2R3-MYB 与其他进化关系较近的不同植物 MYB 氨基酸序列进行比对。结果如图4所示,FeR2R3-MYB 与苦荞麦(APZ74340.1)的相似度最高,为 93.08%,与虎杖(AQY56676.1)、蔷薇杂交种(AID23891.1)也有较高的相似度。FeR2R3-MYB 具有典型的 R2R3-MYB 结构域,属于 R2R3-MYB 亚家族。

2.5 FeR2R3-MYB 蛋白的亚细胞定位

将35S∷FeR2R3-MYB-GFP和pHZM27(35S∷GFP)空载体瞬时转化烟草,通过激光共聚焦显微镜发现(图 5),转化空载体 35S∷GFP 的烟草细胞在细胞核、细胞质、细胞膜上均有荧光分布,但是转化35S∷FeR2R3-MYB-GFP 重组质粒的烟草细胞,只有细胞核分布荧光,说明 FeR2R3-MYB 定位在细胞核上,具有典型的转录因子蛋白的特征。

2.6 FeR2R3-MYB 基因的启动子顺式作用元件预测

从荞麦基因库中调取FeR2R3-MYB 翻译起始位点上游 2 300 bp 的启动子序列,使用 PlantCare 在线网站对其进行分析预测,同时使用 TBtools 对顺式作用元件进行可视化。结果如图6所示:FeR2R3-MYB 启动子序列中含有 49 个真核生物转录起始必需的 TATA 框和 38 个控制转录起始频率的 CAAT 框;含有 8 个光响应元件(2 个 AE-box、2 个 GT1-motif、2 个 TCT-motif、1 个 chs-CMA1a、1 个 3-AF1 binding site)和 1 个昼夜节律控制元件(circadian);含有 12 个 MYB 转录因子结合位点(1 个 MRE、5 个 MYB、2 个 MYB-like sequence、2个 Myb、2 个 Myb-binding site);含有 1 个低温响应元件(LTR)、 1 个防御和应力响应元件(TC-rich repeats)和 2 个厌氧诱导响应元件(ARE);含有 2 个水杨酸反应响应元件(TCA-element)。

2.7 FeR2R3-MYB 基因在红花甜荞(HHTQ)和北早生不同部位的表达模式

初步分析 FeR2R3-MYB 基因在HHTQ和北早生中的功能,利用 qRT-PCR 定量分析甜荞叶片和花序中的表达情况(图7)。结果显示,HHTQ叶片中 FeR2R3-MYB 基因的表达量是北早生的3.03倍;HHTQ花序中 FeR2R3-MYB 基因的表达量是北早生的4.55倍。证明 FeR2R3-MYB 基因可以正向调节甜荞花青素生物合成。

3 讨论与结论

花青素生物合成由结构基因和调控基因决定,结构基因在转录水平上受调控基因的调控,因此植物花青素的积累模式主要受调控基因表达控制。MYB、bHLH 和 WD40 三类转录因子通过互作形成三元复合物 MBW 是调控花青素的生物合成主要途径(高国等,2020)。在不依赖 WD40 蛋白的条件下,MYB 和 bHLH 转录因子也能调控花青素的合成(宋建辉等,2021)。Wang 等(2020)研究发现, PdMYB118 蛋白可以和 bHLH 家族 PdTT8 蛋白相互作用激活杨树ABGs 基因的表达,促使杨树花青素的积累。Espley 等(2010)通过对苹果 MdMYB10 基因瞬时表达结果进行分析,表明 MdMYB10 对花青素生物合成的有效诱导依赖于苹果的两种 bHLH 蛋白(MdHLH3 和 MdHLH33)的共同表达。本研究在 FeR2R3-MYB 的 R3 结构域中发现一个 可以和 bHLH 转录因子发生相互作用的基序,因此推断 FeR2R3-MYB 可能与bHLH 和 WD40 蛋白通过互作形成三元复合物 MBW 来调控甜荞花青素生物合成。Fornalé 等(2010) 研究玉米 R2R3-MYB 转录因子对苯丙烷途径的调控作用,利用染色免疫沉淀确定 ZmMYB31 和其体内两个木质素基因启动子的相互作用,ZmMYB31 基因通过抑制木质素生物合成导致碳通量重新定向到苯丙烷途径的另一个分支,即花青素生物合成途径。总的来说,转录因子的多样性和复杂性,使植物 MYB 对花青素的生物合成途径调节方式不同。

HHTQ 在室内弱光培养条件下,花青素合成受到抑制,子叶呈绿色。Lin-Wang等(2011)研究表明,多数和花青素合成相关的MYB 基因的表达都会受到光照和温度的影响。在强光条件下, FvMYB10 的表达量明显增强,促进草莓花瓣的着色。对于植物, 紫外光是花青素积累的关键因素。感受到 UV-B 辐射后,植物体内的 UVR8(UV resistance locus 8)中的色氨酸残基吸收 UV-B,由二聚体形式转化为单体形式,UVR8 单体进一步形成UVR8-SPA-COP1 复合物(Valentina et al., 2016)。UV-B 诱导植物花青素合成主要有2种形式。一方面,UVR8-SPA-COP1 复合物可以促进 MYB、bHLH 和 WD40 形成 MBW 复合体,促进花青素各结构基因的表达(Li et al., 2012);另一方面,这种复合体可以稳定 HY5 蛋白,进而调控花青素的合成(Shin et al., 2013)。温度是调控植物花青素生物合成的重要环境因子,低温会促进花青素的合成,高温则会抑制花青素的合成并会加速花青素的分解。连续的低温天气会促使果树果实中花青素的积累。较低的夜间温度会使苹果皮花青素积累量增加1倍(Lin-Wang et al., 2011)。Zhu等(2020)连续三年观察发现,低温能诱导花青素在桃肉中积累。在拟南芥中,低温会诱导 HY5 转录因子表达,促进花青素合成结构基因表达,进而增加花青素的积累量(Zhang et al., 2011)。高温会抑制花青素合成相关结构基因和调控基因的表达,从而影响花青素的生物合成。Dela等(2003)对月季进行高温胁迫处理,当处理时间为3 d时,月季花中的花青素积累量明显降低,花青素合成途径关键酶的表达量降低。通过转录组数据,Niu 等(2017)研究高温对李子果实中花青素合成的影响,结果表明高温会使 PsPAL、PsDFR 和 PsCHS 的表达水平下降,从而使得花青素合成受到抑制。本研究在 FeR2R3-MYB 基因序列启动子中发现了多个光响应元件和 1 个低温响应元件,为以后研究环境因素对甜荞花青素生物合成的調控提供了理论基础。

参考文献:

ALBERT NW, DAVIES KM, LEWIS DH, et al., 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots [J]. Plant Cell, 26(3): 962-980.

BALLESTER AR, MOLTHOFF J, VOS RD, et al., 2010. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color  [J]. Physiol Plant, 152(1): 71-84.

BAN Y, HONDA C, HATSUYAMA Y, et al., 2007. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin [J]. Plant Cell Physiol, 48(7): 958-970.

CHAGN D, LIN-WANG K, ESPLEY RV, et al., 2013. An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes [J]. Physiol Plant, 161(1): 225-239.

DELA G, OR E, OVADIA RGAL, et al., 2003. Changes in anthocyanin concentration and composition in ‘Jaguar rose flowers due to transient high-temperature conditions [J]. Plant Sci, 164(3): 333-340.

ESPLEY RV, HELLENS RP, PUTTERILL J, et al., 2010. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10 [J]. Plant J, 49(3): 414-427.

FANG ZW, HOU ZH, WANG SP, et al., 2019. Transcriptome analysis reveals the accumulation mechanism of anthocyanins in buckwheat (Fagopyrum esculentum Moench) cotyledons and flowers [J]. Int J Sci, 20(6): 1493.

FORNAL S, SHI X, CHAI C, et al., 2010. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux [J]. Plant J, 64(4): 633-644.

GAO GY, WU XF, ZHANG DW, et al., 2020. Research progress of MBW complex in phytoanthin synthesis pathway [J]. Biotechnol Newsl, 36(1): 126-134.  [高國应, 伍小方, 张大为, 等, 2020. MBW复合体在植物花青素合成途径中的研究进展 [J].  生物技术通报, 36(1): 126-134.]

HOU ZH, WANG SP, WEI SD, et al., 2017. Anthocyanin biosynthesis and regulation in plants  [J]. Guihaia, 37(12): 1603-1613.  [侯泽豪, 王书平, 魏淑东, 等, 2017. 植物花青素生物合成与调控的研究进展 [J]. 广西植物, 37(12): 1603-1613.]

JIAN W, CAO HH, YUAN S, et al., 2019. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits [J]. Hortic Res, 6(1): 1448-1462.

KOBAYASHI S, ISHIMARU M, HIRAOKA K, et al., 2002. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis [J]. Planta, 215(6): 924-933.

LIN-WANG K, MICHELETTI D, PALMER JW, et al., 2011. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex [J]. Plant Cell Environ, 34(7): 1176-1190.

LIU XT, FAN BB, ZHANG XT, et al., 2019. Sequence analysis of MYB transcription factor genes in potatoes [J]. Mol Plant Breed, 17(20): 24-31.  [刘旭婷, 范菠菠,  张旭婷, 等, 2019. 马铃薯MYB转录因子基因的序列分析 [J]. 分子植物育种, 17(20): 24-31.]

LUO XP, ZHAO HX, YAO PF, et al., 2017. An R2R3-MYB transcription factor FtMYB15 involved in the synthesis of anthocyanin and proanthocyanidins from tartary buckwheat [J]. J Plant Growth Regul, 37(1): 1-9.

NIU YL, JIANG XM, XU XY, 2016. Research progress on the MYB gene family of plant transcription factors [J]. Mol Plant Breed, 14(8): 2050-2059.  [牛义岭, 姜秀明, 许向阳, 2016. 植物转录因子MYB基因家族的研究进展 [J]. 分子植物育种, 14(8): 2050-2059.]

OGATA K, KANEI-ISHII C, SASAKI M, et al., 1996. The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation [J]. Nat Struct Mol Biol, 3(2): 178-187.

PAZ-ARES J, GHOSAL D, WIENAND U, et al., 1987. The regulatory c1 locus of Zea mays encodes a protein with homology to MYB proto-oncogene products and with structural similarities to transcriptional activators  [J]. Embo J, 6(12): 3553-3558.

QIAN JH, LI ZQ, LIAO XF, et al., 2016. Research progress on MYB transcription factors regulating flower development in plants [J]. Biotechnol Newsl, 27(2): 283-288.  [钱景华, 李增强, 廖小芳, 等, 2016. 调控植物花发育的MYB类转录因子研究进展 [J]. 生物技术通讯, 27(2): 283-288.]

SAITO K, YAMAZAKI M, 2002. Biochemistry and molecular biology of the late-stage of biosynthesis of anthocyanin: lessons from Perilla frutescens as a model plant [J]. New Phytol, 155(1): 9-23.

SHIN DH, CHOI MG, KIM K, et al., 2013. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis [J]. Febs Lett, 587(10): 1543-1547.

SONG JH, GUO CK, SHI M, 2021. Biosynthesis and regulation of plant anthocyanins [J]. Mol Plant Breed, 19(11): 3612-3620.  [宋建輝, 郭长奎,石敏, 2021. 植物花青素生物合成及调控 [J]. 分子植物育种, 19(11): 3612-3620.]

TAMAGNONE L, MERIDA A, PARR A, et al., 1998. The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco [J]. Plant Cell, 10(2): 135-154.

TANAKA Y, SASAKI N, OHMIYA A, 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids [J]. Plant J, 54(4): 733-749.

VALENTINA P, RONALD K, FRANCESCA MQ, 2016. New challenges for the design of high value plant products: stabilization of anthocyanins in plant vacuoles [J]. Front Plant Sci, 7: 153.

WANG HH, WANG XQ, YU CY, et al., 2020. MYB transcription factor PdMYB118 directly interacts with bHLH transcription factor PdTT8 to regulate wound-induced anthocyanin biosynthesis in poplar [J]. BMC Plant Biol, 20(1): 173.

WANG YG, ZHOU LJ, WANG YX, et al., 2021. An R2R3-MYB transcription factor CmMYB21 represses anthocyanin biosynthesis in color fading petals of chrysanthemum [J]. Sci Hortic, 293: 110674.

YE GJ, ZHANG B, CHEN WJ, et al., 2016. Cloning and functional analysis of R2R3-MYB transcription factor TaMYB3-4A in purpurea wheat plateau 115 [J]. Mol Plant Breed, 14(8): 1940-1947. [葉广继, 张波, 陈文杰, 等, 2016. 紫粒小麦高原115中R2R3-MYB转录因子TaMYB3-4A的克隆及功能分析 [J]. 分子植物育种, 14(8): 1940-1947.]

ZHANG YQ, ZHENG S, LIU ZJ, et al., 2011. Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings [J]. J Plant Physiol, 168(4): 367-374.

ZHU YH, ZHANG B, ALLAN AC, et al., 2020. DNA demethylation is involved in the regulation of temperature-dependent anthocyanin accumulation in peach [J]. Plant J, 102(5): 965-976.

(责任编辑 邓斯丽)

猜你喜欢

转录因子表达分析生物信息学
“PBL+E—learning”教学模式探索
移动教学在生物信息学课程改革中的应用
中医大数据下生物信息学的发展及教育模式浅析
NF—κB信号通路抗肝纤维化的研究进展
数据挖掘技术在生物信息学中的应用
红花生育酚环化酶基因的克隆及表达分析
植物Trihelix转录因子家族的分类、结构和功能研究进展
玉米纹枯病病菌y—谷氨酰转肽酶基因克隆与表达分析
信号分子与叶锈菌诱导下小麦病程相关蛋白1基因的表达分析
水稻OsCATA基因相互作用蛋白的筛选和表达分析