金属有机框架材料载体系统在食品抗菌包装中的应用
2023-08-12王涛徐丹
王涛,徐丹
金属有机框架材料载体系统在食品抗菌包装中的应用
王涛,徐丹
(西南大学 食品科学学院,重庆 400715)
综述金属有机框架材料(Metal-organic frameworks,MOFs)作为载体系统在食品抗菌包装领域的研究现状和应用进展,以期为MOFs类抗菌包装材料的研发和应用提供参考。介绍MOFs的基本概念及分类,概述MOFs的制备方法(加热法、机械法和电化学法等),总结归纳近年来MOFs作为载体系统在无机抗菌剂、有机抗菌剂和天然抗菌剂领域的应用,并讨论MOFs作为载体系统的机遇和挑战。MOFs作为一种有机与无机相结合的多孔性复合材料,不仅可有效封装抗菌剂,实现缓释和控释,且将MOFs复合材料作为高分子填料可提高其抗菌性能、力学性能和抗紫外线性能等,因此在制备高效、安全的食品抗菌包装方面具有巨大潜力。
金属有机框架材料;载体系统;食品抗菌包装
微生物污染是造成食品变质并导致食品安全问题的主要原因之一,可能发生在原料获得、加工、贮藏和销售等各环节[1]。为了更好地减少微生物在食品加工和流通各环节对食品的污染,减少食品中防腐剂的添加,抗菌食品包装逐渐成为近年的研究热点。抗菌包装指将抗菌物质添加到包装材料中,通过抗菌物质与食品的直接接触或以一定速度释放至食品中,起到杀菌或抑制微生物生长的作用,从而延缓食品的腐败变质,提升食品安全[2]。
在抗菌包装中添加的抗菌物质可分为无机抗菌剂、有机抗菌剂和天然抗菌剂。直接将抗菌剂添加至包装基材中可能存在以下2个问题:一是抗菌剂与包装基材的相容性不足,导致抗菌剂在基材中难以分散,对基材性能存在不良影响;二是释放型抗菌剂的抗菌效果好,但需对其释放速率进行调控。目前,采用载体系统对抗菌剂进行封装和控释是解决上述问题的有效策略之一。采用载体系统对抗菌剂进行封装,不仅能提高其相容性,还能起到控释效果。有机和无机化合物都可作为载体系统,如聚合物[3]、脂质体[4]、沸石[5]和量子点[6]等。虽然有机载体具有生物相容性好、低毒、可化学改性等优点,但其合成过程通常较复杂,且负载率较低。虽然无机多孔材料具有较高的负载能力,但存在结构单一、缺乏柔性、孔道不规则等缺点,不具备控释性能,限制了其应用范围。
金属有机框架材料(Metal-organic frameworks,MOFs)是近年来发展起来的一种由有机配体和金属离子或团簇通过配位键自组装形成的具有分子内孔隙的有机−无机杂化材料,具有比表面积大、孔径可调节、生物相容性好等优点[7],在医药[8]、化工[9]、环境[10]等多个领域具有良好的应用前景。在食品工程领域,大量研究已经将MOFs用作气体吸附剂[11]或活性物质载体[12],应用于食品检测、食品加工及食品包装[13]等领域。同时,MOFs也被作为多种抗菌剂的载体,用于提高抗菌效率或调控释放速率,表现出良好的应用前景。文中首先介绍MOFs的基本概念及分类,然后综述其作为抗菌剂载体系统在食品包装中的最新研究进展,以期为MOFs类抗菌包装材料的研发和应用提供参考。
1 MOFs简介
MOFs主要是由含氧、氮等多齿有机配体(大多为芳香多酸和多碱)与金属离子或离子簇通过配位键连接而成的一类多孔晶体材料[14],其孔隙率较高,且孔隙形状和尺寸可调[15],兼具无机材料的刚性和有机材料的柔性,是一类极具应用前景的多孔材料。根据MOFs的配体结构,可将其分为羧酸类、氮杂环类,以及环糊精等生物分子类,如表1所示。
MOFs可采用以下3种方法合成。
1)加热法。以水、N,N-二甲基甲酰胺、甲醇等为溶剂体系,将金属离子和有机配体等原料混合均匀后加热合成MOFs。根据加热方式,可分为溶剂热法[22]、超声波法[23]和微波法[24]。相较于溶剂热法,超声波法能在短时间内合成粒径较小的MOFs材料[25],微波法有利于合成粒径均一的MOFs材料[26]。
2)机械法[27]。机械法的优点在于无须加入溶剂,只需按比例添加金属盐和配体后进行机械研磨,即可合成MOFs材料,具有操作简便、环保等优点。
3)电化学法[28]。这种方法以有机配体为电解质,以阳极为金属离子产生源,通电后在电极附近持续不断地合成MOFs。这种方法对配体的利用率较高,可连续化生产,适用于MOFs的工业化生产。
通过有机配体的选择,可以调控MOFs比表面积和孔隙结构,使其具有高负载和可控释放的能力[29],为其包封不同种类和尺寸的抗菌剂奠定基础。此外,MOFs中的金属活性位点较多且分布均匀[30],用于抗菌剂负载时,不仅负载率高,且能均匀分散。目前,将MOFs作为载体系统对抗菌剂进行包封包括3种封装方式(图1)[31]:原位封装法,将合成MOFs的原料与抗菌剂溶液混合,在合成MOFs的同时也将抗菌剂包封在孔内;后合成法,将合成后的MOFs与抗菌剂溶液混合,利用两者之间的相互作用将抗菌剂封装在MOFs孔内;自组装法,将抗菌剂作为MOFs的配体(或配位中心)合成MOFs,制备的MOFs材料不仅负载率高,且能负载其他抗菌剂,实现协同抗菌效果。将MOFs载体系统与抗菌剂通过以上3种包封方法形成的复合物或配合物统称为MOFs抗菌系统。在使用时,可将MOFs抗菌系统放入无纺布袋中直接使用,也可与高分子基材成膜,或作为其他薄膜材料的涂层,通过与食品接触或释放抗菌剂来发挥抗菌作用。
2 MOFs载体系统在食品抗菌包装中的应用
根据常用抗菌剂的化学组成和来源,可将其分为无机抗菌剂、有机抗菌剂和天然抗菌剂3类。针对以上3类抗菌剂,MOFs均可作为其载体来制备抗菌材料,如图2所示。
表1 MOFs的分类
Tab.1 Classification of MOFs
图1 MOFs包封抗菌剂的方式[31]
图2 MOFs作为抗菌剂载体系统的分类
2.1 MOFs作为无机抗菌剂载体
按照抗菌机理可将无机抗菌剂分为金属型和光催化型两大类。金属型抗菌剂指利用银、铜、锌等金属(或其离子)的抗菌性能,通过物理吸附或离子交换等方式将其固定在载体材料上制成的抗菌剂[32]。它们的抗菌机制是与微生物内蛋白质的硫基(—SH)等相互作用,破坏细胞合成酶的活性,影响细胞的正常代谢,导致微生物死亡[33]。其中,银离子的抗菌能力远高于其他金属离子,其应用也最广泛。光催化型抗菌剂主要为一些金属氧化物(如二氧化钛、氧化锌等),在光的作用下金属离子激活空气和水中的氧,产生羟基自由基和活性氧离子,与细菌细胞膜上的多元不饱和磷脂发生反应,导致细菌死亡[34]。二氧化钛具有稳定性高、氧化能力强、毒性小等优点,应用较广泛。
无机抗菌剂具有良好的广谱抗菌活性,在短时间和低浓度接触下对真核细胞的影响较弱,对微生物具有很强的毒性[35],但单独使用时存在分散性差、释放速率不易控制、长时间直接接触对人类有毒性作用等缺点[36]。采用多孔性材料(如MOFs)对其进行负载,能有效解决上述问题。表2列举了以MOFs为无机抗菌剂载体在食品保鲜和食品包装中的研究。其中,Duan等[37]将合成后的金属有机框架(HKUST-1)@羧甲基纤维(Carboxymethylated fibers,CFs)作为载体浸入硝酸银溶液中,利用原位微波还原技术将纳米银(AgNPs)均匀固定在载体表面和孔隙中,成功制备了纳米银颗粒@金属有机框架@羧甲基纤维复合材料(AgNPs@HKUST-1@CFs)。结果表明,该复合材料对金黄色葡萄球菌的生长抑制率为99.41%,远高于AgNPs@CFs的12.94%和HKUST-1@CFs的64.12%,具有作为高效复合抗菌包装膜的潜力。Zhang等[38]利用Ag+和壳聚糖(CS)分子间的相互作用,将Ag+作为配位中心,引导Ag-MOFs在壳聚糖基质中生长,制备出在水中具有良好分散性和稳定性的Ag-MOFs@CS复合材料。结果表明,Ag-MOFs@CS对大肠杆菌和金黄色葡萄球菌的抑制能力均高于Ag@CS,且放置100 d后仍能保持良好的抗菌性能。将 Ag-MOFs@CS悬浮液喷洒于火龙果表面,可将其货架期延长7 d。以上研究表明,MOFs可用作银等金属纳米颗粒或离子类抗菌剂的载体,不仅可以防止其过度释放,也可促进其在基材中均匀分散,提高抗菌效果。
2.2 MOFs作为有机抗菌剂载体
有机抗菌剂指以酚类、醇类、季胺类、卤化物类、吡啶类、咪唑类等有机物为主要成分的抗菌剂,根据分子量可分为高分子和低分子2类。高分子抗菌剂主要通过均聚、接枝等方式引入抗菌官能团来获得抗菌能力[42],其杀菌速度快、抗菌效果好,在水处理[43]、涂料[44]、家装[45]等领域得到广泛应用。低分子抗菌剂可与微生物细胞膜结合并进入细胞内,破坏蛋白质结构,阻碍细胞膜的合成,从而抑制微生物的繁殖[46]。
MOFs作为载体系统已经应用于一些低分子有机抗菌剂,如乙醇[47]、乙醛等。Nagarajan等[48]利用环糊精金属有机框架(CD-MOF)作为模板捕获并储存己醛,然后将其应用于芒果保鲜中。结果表明,对照组果实在贮藏第10天时已腐烂变质,而处理组果实由于CD-MOF的控释作用,其货架期达到15 d,因此CD-MOF封装被认为是实现己醛控释并将其应用于食品保鲜的有效途径之一。
2.3 MOFs作为天然抗菌剂载体
天然抗菌剂直接源于动植物体内,或由微生物合成,具有抗菌范围广、安全性高、无毒、无害、环保、生物相容性好等突出优点[49],是最古老的抗菌剂。不同来源的天然抗菌剂的抗菌机制有所不同。其中,植物源抗菌剂的抗菌机制为破坏微生物的细胞壁、细胞膜、细胞质膜,导致细胞内物质外流,使细胞质发生凝聚等抑菌现象,每种作用机制都存在一定关联性[50]。目前,动物源抗菌剂的抗菌机制尚不完全,在壳聚糖研究中有2种机制被人们广泛接受[51]:壳寡糖分子中的氨基带正电,能够吸附在微生物表面,破坏细胞壁和细胞膜,进而导致细菌死亡;以渗透方式进入细菌细胞内,吸附阴离子等物质,导致细胞活动紊乱而死亡。微生物源抗菌剂的抗菌机制有以下几种:通过竞争的方式获得生存繁殖能力,抑制微生物生长;分泌抗菌物质,抑制微生物生长;直接作用于微生物;寄生于微生物上[52]。
表2 MOFs作为无机抗菌剂载体在食品保鲜和食品包装中的应用
Tab.2 Application of MOFs as inorganic antibacterial agent carrier in food preservation and packaging
MOFs与以上3种天然抗菌剂的结合均有报道,但尤以植物源抗菌剂研究最多。植物源天然抗菌剂主要为精油类物质,是食品抗菌包装中研究得最多的一类,它存在挥发性强、有刺激性气味、不溶于水等缺点,同时易与食品中的某些成分(如水、脂质、蛋白质)发生反应,通常需要大剂量才能实现有效抗菌,因此将MOFs作为载体系统与植物源抗菌剂结合使用是发挥其效用的一种有效策略。列举了MOFs作为植物源抗菌剂载体的应用研究,见表3。Lashkari等[53]用HKUST-1、MOF-74(Zn)和RPM6-Zn 3种金属有机框架材料包埋从植物中提取的异硫氰酸烯丙酯(Allyl isothiocyanate,AITC),并测定了复合材料在不同湿度环境下对AITC的控释效果。结果表明,在低湿度环境(相对湿度30%~35%)下仅有少量释放,而在高湿度环境(相对湿度95%~100%)下则完全释放。这种利用湿度作为外部触发器为活性物质的控释提供了新策略。Min等[54]使用卟啉金属有机框架负载百里酚,并将其与普鲁兰多糖/聚乙烯醇共混,制备出纳米纤维(THY@PCN/PUL/PVA),成功解决了百里酚易于挥发和难溶于水的问题。这种释放行为表明,纯百里酚的释放时间为96 h,而THY@PCN的释放时间达到192 h。细胞活力测定结果表明,该膜具有良好的生物安全性。果蔬保鲜实验表明,该膜对葡萄和草莓均具有延长保鲜时间的效果。Zhao等[55]将辣椒素负载于中空金属有机框架FeⅢ-HMOF-5中,并加入明胶/壳聚糖制备抗菌包装膜。结果表明,FeIII-HMOF-5的添加有效提高了辣椒素在明胶/壳聚糖基质中的相容性,显著增强了膜的拉伸强度、透湿性和抗紫外线性能,以及对大肠杆菌的抗菌活性,并延长了鲜切苹果的保鲜时间。由此可见,MOFs包埋植物源天然抗菌剂有效解决了其挥发性强、疏水性高、生物相容性差等问题,为推动该抗生剂在食品抗菌包装领域的实际应用提供了有效途径。
动物源天然抗菌剂一般为甲壳素和壳聚糖及其衍生物,是常用的天然抗菌剂之一,其分子量大,不易被MOFs包封,通常将MOFs作为填料与其共混使用[59]。微生物源天然抗菌剂(如乳酸链球菌素、纳他霉素、溶菌酶和片球菌素等)在食品抗菌包装中已得到广泛应用[60-62]。其中,Nisin和纳他霉素对环境变化较敏感,易与食品中的成分相互作用,通常需要借助包埋系统克服其应用局限,目前尚未见以MOFs为载体的相关研究。虽然MOFs已被证实可作为酶等蛋白类物质的载体[63-65],但作为具有抗菌活性的酶类载体系统应用于抗菌包装的研究较少。后续可加强MOFs对微生物源天然抗菌剂进行包封的研究,以提高其耐受性、稳定性和重复利用性。
表3 MOFs作为植物源天然抗菌剂载体在食品保鲜和食品包装中的应用
Tab.3 Application of MOFs as plant-derived natural antibacterial agent carriers in food preservation and packaging
3 结语
MOFs作为一种有机与无机结合的多孔性复合材料,具有比表面积高、孔隙结构可调、适应性强、生物相容性好等优点,不仅可有效封装抗菌剂,实现缓释和控释,将MOFs复合材料作为高分子填料还可提高其抗菌性能、力学性能和抗紫外线性能等,因此在制备高效、安全的食品抗菌包装方面具有巨大潜力。目前,MOFs作为载体系统用于食品包装领域虽已有较多研究,但仍需在以下几方面进一步深入探讨,以推动其实际应用。
1)根据抗菌剂的结构和性能特点,制备和选择具有适宜孔径和化学特性的MOFs,以提高抗菌剂的负载效率,实现不同环境下的控释。
2)不同种类的MOFs载体对抗菌剂的活性、结构、释放等方面的影响仍有待进一步研究。
3)粉末状MOFs与合成高分子复合可能对回收利用造成一定影响,可将其与天然/可降解高分子材料复合,并进一步研究其可降解性能。
4)MOFs中的金属离子或有机配体可能存在潜在毒性,应尽量选用低毒的金属离子和生物相容性好的有机配体,且在用于食品接触材料时需对其迁移风险进行评估。
[1] NERÍN C, AZNAR M, CARRIZO D. Food Contamination during Food Process[J]. Trends in Food Science & Technology, 2016, 48: 63-68.
[2] APPENDINI P, HOTCHKISS J. Review of Antimicrobial Food Packaging[J]. Innovative Food Science & Emerging Technologies, 2002, 3(2): 113-126.
[3] CHEN Chen-wei, ZONG Lin, WANG Jia-xi, et al. Microfibrillated Cellulose Reinforced Starch/Polyvinyl Alcohol Antimicrobial Active Films with Controlled Release Behavior of Cinnamaldehyde[J]. Carbohydrate Polymers, 2021, 272: 118448.
[4] LI Yi, LU Ai-ling, LONG Meng-meng, et al. Nitroimidazole Derivative Incorporated Liposomes for Hypoxia-Triggered Drug Delivery and Enhanced Therapeutic Efficacy in Patient-Derived Tumor Xenografts[J]. Acta Biomaterialia, 2019, 83: 334-348.
[5] YOUSSEF H F, EL-NAGGAR M E, FOUDA F K, et al. Antimicrobial Packaging Film Based on Biodegradable CMC/PVA-Zeolite Doped with Noble Metal Cations[J]. Food Packaging and Shelf Life, 2019, 22: 100378.
[6] PARDO J, PENG Zhi-li, LEBLANC R. Cancer Targeting and Drug Delivery Using Carbon-Based Quantum Dots and Nanotubes[J]. Molecules, 2018, 23(2): 378.
[7] PETTINARI C, PETTINARI R, DI NICOLA C, et al. Antimicrobial MOFs[J]. Coordination Chemistry Reviews, 2021, 446: 214121.
[8] LIU Yi-wei, ZHOU Lu-yi, DONG Ying, et al. Recent Developments on MOF-Based Platforms for Antibacterial Therapy[J]. RSC Medicinal Chemistry, 2021, 12(6): 915-928.
[9] DU Ying-jie, JIA Xiao-tong, ZHONG Le, et al. Metal-Organic Frameworks with Different Dimensionalities: An Ideal Host Platform for enzyme@MOF Composites[J]. Coordination Chemistry Reviews, 2022, 454: 214327.
[10] JIA Wen-wen, FAN Rui-qing, ZHANG Jian, et al. Smart MOF-on-MOF Hydrogel as a Simple Rod-Shaped Core for Visual Detection and Effective Removal of Pesticides[J]. Small, 2022, 18(19): 2201510.
[11] SULTANA A, KATHURIA A, GAIKWAD K. Metal-Organic Frameworks for Active Food Packaging-A Review[J]. Environmental Chemistry Letters, 2022, 20(2): 1479-1495.
[12] MAGRI A, PETRICCIONE M, GUTIÉRREZ T. Metal-Organic Frameworks for Food Applications: A Review[J]. Food Chemistry, 2021, 354: 129533.
[13] WANG Pei-long, XIE Lin-hua, JOSEPH E, et al. Metal-Organic Frameworks for Food Safety[J]. Chemical Reviews, 2019, 119(18): 10638-10690.
[14] LIU Chang, WU Yi-nan, MORLAY C, et al. General Deposition of Metal-Organic Frameworks on Highly Adaptive Organic-Inorganic Hybrid Electrospun Fibrous Substrates[J]. ACS Applied Materials & Interfaces, 2016, 8(4): 2552-2561.
[15] MALLAKPOUR S, NIKKHOO E, HUSSAIN C. Application of MOF Materials as Drug Delivery Systems for Cancer Therapy and Dermal Treatment[J]. Coordination Chemistry Reviews, 2022, 451: 214262.
[16] EDDAOUDI M, KIM J, ROSI N, et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage[J]. Science, 2002, 295(5554): 469-472.
[17] FÉREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area[J]. Science, 2005, 309(5743): 2040-2042.
[18] SHOAEE M, ANDERSON M, ATTFIELD M. Crystal Growth of the Nanoporous Metal-Organic Framework HKUST-1 Revealed by in Situ Atomic Force Microscopy[J]. Angewandte Chemie International Edition, 2008, 47(44): 8525-8528.
[19] CAVKA J, JAKOBSEN S, OLSBYE U, et al. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851.
[20] WANG Bo, CÔTÉ A, FURUKAWA H, et al. Colossal Cages in Zeolitic Imidazolate Frameworks as Selective Carbon Dioxide Reservoirs[J]. Nature, 2008, 453(7192): 207-211.
[21] HE Yuan-zhi, ZHANG Wei, GUO Tao, et al. Drug Nanoclusters Formed in Confined Nano-Cages of CD-MOF: Dramatic Enhancement of Solubility and Bioavailability of Azilsartan[J]. Acta Pharmaceutica Sinica B, 2019, 9(1): 97-106.
[22] HE Chun-bai, LIU De-min, LIN Wen-bin. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal-Ligand Coordination Bonds: Nanoscale Metal-Organic Frameworks and Nanoscale Coordination Polymers[J]. Chemical Reviews, 2015, 115(19): 11079-11108.
[23] BIGDELI F, GHASEMPOUR H, AZHDARI TEHRANI A, et al. Ultrasound-Assisted Synthesis of Nano-Structured Zinc(Ⅱ)-Based Metal-Organic Frameworks as Precursors for the Synthesis of ZnO Nano-Structures[J]. Ultrasonics Sonochemistry, 2017, 37: 29-36.
[24] CHOI J, SON W, KIM J, et al. Metal-Organic Framework MOF-5 Prepared by Microwave Heating: Factors to be Considered[J]. Microporous and Mesoporous Materials, 2008, 116(1/2/3): 727-731.
[25] GEDANKEN A. Using Sonochemistry for the Fabrication of Nanomaterials[J]. Ultrasonics Sonochemistry, 2004, 11(2): 47-55.
[26] PARK S, CHANG J, HWANG Y, et al. Supramolecular Interactions and Morphology Control in Microwave Synthesis of Nanoporous Materials[J]. Catalysis Surveys from Asia, 2004, 8(2): 91-110.
[27] YUAN Wen-bing, FRIŠČIĆ T, APPERLEY D, et al. High Reactivity of Metal-Organic Frameworks under Grinding Conditions: Parallels with Organic Molecular Materials[J]. Angewandte Chemie International Edition, 2010, 49(23): 3916-3919.
[28] CAMPAGNOL N, VAN ASSCHE T, BOUDEWIJNS T, et al. High Pressure, High Temperature Electrochemical Synthesis of Metal-Organic Frameworks: Films of MIL-100 (Fe) and HKUST-1 in Different Morphologies[J]. Journal of Materials Chemistry A, 2013, 1(19): 5827-5830.
[29] WANG Ying, YAN Jian-hua, WEN Na-chuan, et al. Metal-Organic Frameworks for Stimuli-Responsive Drug Delivery[J]. Biomaterials, 2020, 230: 119619.
[30] JIAO Long, SEOW J Y, SKINNER W, et al. Metal-Organic Frameworks: Structures and Functional Applications[J]. Materials Today, 2019, 27: 43-68.
[31] KAUR N, TIWARI P, KAPOOR K, et al. Metal-Organic Framework Based Antibiotic Release and Antimicrobial Response: An Overview[J]. CrystEngComm, 2020, 22(44): 7513-7527.
[32] MILLER K, WANG Lei, BENICEWICZ B, et al. Inorganic Nanoparticles Engineered to Attack Bacteria[J]. Chemical Society Reviews, 2015, 44(21): 7787-7807.
[33] VALDEZ-SALAS B, BELTRÁN-PARTIDA E, ZLATEV R, et al. Structure-Activity Relationship of Diameter Controlled Ag@Cu Nanoparticles in Broad-Spectrum Antibacterial Mechanism[J]. Materials Science and Engineering: C, 2021, 119: 111501.
[34] ZHANG Wan-li, RHIM J. Titanium Dioxide (TiO2) for the Manufacture of Multifunctional Active Food Packaging Films[J]. Food Packaging and Shelf Life, 2022, 31: 100806.
[35] KIM J, KUK E, YU K, et al. Antimicrobial Effects of Silver Nanoparticles[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2007, 3(1): 95-101.
[36] HUSSAIN S M, HESS K L, GEARHART J M, et al. In Vitro Toxicity of Nanoparticles in BRL 3A Rat Liver Cells[J]. Toxicology in Vitro, 2005, 19(7): 975-983.
[37] DUAN Chao, MENG Jing-ru, WANG Xin-qi, et al. Synthesis of Novel Cellulose- Based Antibacterial Composites of Ag Nanoparticles@Metal-Organic Frameworks@ Carboxymethylated Fibers[J]. Carbohydrate Polymers, 2018, 193: 82-88.
[38] ZHANG Yuan-cheng, LIN Zhen-hao, HE Qiu-wen, et al. Enhanced Aqueous Stability and Long-Acting Antibacterial of Silver-Based MOFs via Chitosan-Crosslinked for Fruit Fresh-Keeping[J]. Applied Surface Science, 2022, 571: 151351.
[39] ZHANG Meng, ZHENG Yu-qi, JIN Yang, et al. Ag@MOF-loaded P-Coumaric Acid Modified Chitosan/Chitosan Nanoparticle and Polyvinyl Alcohol/Starch Bilayer Films for Food Packing Applications[J]. International Journal of Biological Macromolecules, 2022, 202: 80-90.
[40] FU Dong-sheng, DING Yuan-zheng, GUO Rui-jie, et al. Polylactic Acid/Polyvinyl Alcohol-Quaternary Ammonium Chitosan Double-Layer Films Doped with Novel Antimicrobial Agent CuO@ZIF-8 NPs for Fruit Preservation[J]. International Journal of Biological Macromolecules, 2022, 195: 538-546.
[41] WU Ya-meng, ZHAO Pei-chen, JIA Bin, et al. A Silver-Functionalized Metal-Organic Framework with Effective Antibacterial Activity[J]. New Journal of Chemistry, 2022, 46(13): 5922-5926.
[42] LUO Hao, YIN Xue-qian, TAN Peng-fei, et al. Polymeric Antibacterial Materials: Design, Platforms and Applications[J]. Journal of Materials Chemistry B, 2021, 9(12): 2802-2815.
[43] ZHU Jun-yong, HOU Jing-wei, ZHANG Ya-tao, et al. Polymeric Antimicrobial Membranes Enabled by Nanomaterials for Water Treatment[J]. Journal of Membrane Science, 2018, 550: 173-197.
[44] GUPTA S, PUTTAIAHGOWDA Y, NAGARAJA A, et al. Antimicrobial Polymeric Paints: An Up-to-Date Review[J]. Polymers for Advanced Technologies, 2021, 32(12): 4642-4662.
[45] WU Yan, BIAN Yu-qing, YANG Feng, et al. Preparation and Properties of Chitosan/Graphene Modified Bamboo Fiber Fabrics[J]. Polymers, 2019, 11(10): 1540.
[46] ROMANAZZI G, SMILANICK J, FELIZIANI E, et al. Integrated Management of Postharvest Gray Mold on Fruit Crops[J]. Postharvest Biology and Technology, 2016, 113: 69-76.
[47] KATHURIA A, PAUWELS A, BUNTINX M, et al. Inclusion of Ethanol in a Nano-Porous, Bio-Based Metal Organic Framework[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 95: 91-98.
[48] NAGARAJAN V, KIZHAERAL S S, SUBRAMANIAN M, et al. Encapsulation of a Volatile Biomolecule (Hexanal) in Cyclodextrin Metal-Organic Frameworks for Slow Release and Its Effect on Preservation of Mangoes[J]. ACS Food Science & Technology, 2021, 1(10): 1936-1944.
[49] MUKURUMBIRA A R, SHELLIE R A, KEAST R, et al. Encapsulation of Essential Oils and Their Application in Antimicrobial Active Packaging[J]. Food Control, 2022, 136: 108883.
[50] 王洪江, 宋雪健, 李志江, 等. 抗菌包装材料及其在食品包装领域的研究进展[J]. 黑龙江八一农垦大学学报, 2018, 30(4): 69-74.
WANG Hong-jiang, SONG Xue-jian, LI Zhi-jiang, et al. Research Progress of Antimicrobial Packaging Materials in Food Packaging[J]. Journal of Heilongjiang Bayi Agricultural University, 2018, 30(4): 69-74.
[51] 马超, 吴瑛. 抗菌剂抗菌机理简述[J]. 中国酿造, 2016, 35(1): 5-9.
MA Chao, WU Ying. Research on Antimicrobial Agents and Their Mechanism of Actions[J]. China Brewing, 2016, 35(1): 5-9.
[52] 郭娟, 张进, 王佳敏, 等. 天然抗菌剂在食品包装中的研究进展[J]. 食品科学, 2021, 42(9): 336-346.
GUO Juan, ZHANG Jin, WANG Jia-min, et al. Natural Antibacterial Agents and Their Application in Food Packaging: A Review[J]. Food Science, 2021, 42(9): 336-346.
[53] LASHKARI E, WANG Hao, LIU Lin-shu, et al. Innovative Application of Metal-Organic Frameworks for Encapsulation and Controlled Release of Allyl Isothiocyanate[J]. Food Chemistry, 2017, 221: 926-935.
[54] MIN Tian-tian, SUN Xiao-li, ZHOU Li-ping, et al. Electrospun Pullulan/PVA Nanofibers Integrated with Thymol-Loaded Porphyrin Metal-Organic Framework for Antibacterial Food Packaging[J]. Carbohydrate Polymers, 2021, 270: 118391.
[55] ZHAO Jia-yi, WEI Feng, XU Wei-li, et al. Enhanced Antibacterial Performance of Gelatin/Chitosan Film Containing Capsaicin Loaded MOFs for Food Packaging[J]. Applied Surface Science, 2020, 510: 145418.
[56] WU Yun-peng, LUO Ya-guang, ZHOU Bin, et al. Porous Metal-Organic Framework (MOF) Carrier for Incorporation of Volatile Antimicrobial Essential Oil[J]. Food Control, 2019, 98: 174-178.
[57] HUANG Guo-huan, YAN Yu-ping, XU Dan-xia, et al. Curcumin-Loaded nanoMOFs@CMFP: A Biological Preserving Paste with Antibacterial Properties and Long-Acting, Controllable Release[J]. Food Chemistry, 2021, 337: 127987.
[58] NING Hao-yue, LU Li-xin, XU Jing, et al. Development of Sodium Alginate-Based Antioxidant and Antibacterial Bioactive Films Added with IRMOF-3/Carvacrol[J]. Carbohydrate Polymers, 2022, 292: 119682.
[59] KOHSARI I, SHARIATINIA Z, POURMORTAZAVI S. Antibacterial Electrospun Chitosan-Polyethylene Oxide Nanocomposite Mats Containing ZIF-8 Nanoparticles[J]. International Journal of Biological Macromolecules, 2016, 91: 778-788.
[60] GULZAR S, TAGRIDA M, PRODPRAN T, et al. Antimicrobial Film Based on Polylactic Acid Coated with Gelatin/Chitosan Nanofibers Containing Nisin Extends the Shelf Life of Asian Seabass Slices[J]. Food Packaging and Shelf Life, 2022, 34: 100941.
[61] FAJARDO P, MARTINS J T, FUCIÑOS C, et al. Evaluation of a Chitosan-Based Edible Film as Carrier of Natamycin to Improve the Storability of Saloio Cheese[J]. Journal of Food Engineering, 2010, 101(4): 349-356.
[62] GONZÁLEZ A, ALVAREZ IGARZABAL C. Soy Protein-Poly(lactic acid) Bilayer Films as Biodegradable Material for Active Food Packaging[J]. Food Hydrocolloids, 2013, 33(2): 289-296.
[63] CHEN Guo-sheng, HUANG Si-ming, KOU Xiao-xue, et al. A Convenient and Versatile Amino-Acid-Boosted Biomimetic Strategy for the Nondestructive Encapsulation of Biomacromolecules within Metal-Organic Frameworks[J]. Angewandte Chemie International Edition, 2019, 58(5): 1463-1467.
[64] LYKOURINOU V, CHEN Yao, WANG Xi-sen, et al. Immobilization of MP-11 into a Mesoporous Metal–Organic Framework, MP-11@mesoMOF: A New Platform for Enzymatic Catalysis[J]. Journal of the American Chemical Society, 2011, 133(27): 10382-10385.
[65] MARSH C, SHEARER G, KNIGHT B, et al. Supramolecular Aspects of Biomolecule Interactions in Metal-Organic Frameworks[J]. Coordination Chemistry Reviews, 2021, 439: 213928.
Application of Metal-organic Frameworks as Carrier System in Food Antibacterial Packaging
WANG Tao, XU Dan
(College of Food Science, Southwest University, Chongqing 400715, China)
The work aims to review the research status and application progress of metal-organic frameworks (MOFs) as carrier systems in the field of food antibacterial packaging, so as to provide reference for the development and application of MOFs antibacterial packaging materials. Firstly, the basic concepts and classification of MOFs were introduced. Secondly, the preparation methods of MOFs (heating method, mechanical method and electrochemical method) were analyzed. Then, the applications of MOFs as carrier systems in the fields of inorganic antibacterial agents, organic antibacterial agents and natural antibacterial agents in recent years were summarized. Finally, the opportunities and challenges of MOFs as carrier systems were discussed. In general, as a porous composite material combining organic and inorganic materials, MOFs can not only effectively encapsulate antibacterial agents to achieve sustained release and controlled release, but also improve their antibacterial properties, mechanical properties and UV resistance when used as polymer fillers. Therefore, MOFs have great potential in the preparation of efficient and safe food antibacterial packaging.
metal-organic frameworks; carrier system; food antibacterial packaging
TS206.4
A
1001-3563(2023)15-0086-08
10.19554/j.cnki.1001-3563.2023.15.012
2023−01−18
王涛(1998—),男,硕士生,主攻活性包装材料。
徐丹(1983—),女,博士,教授,主要研究方向为食品包装材料与农产品保鲜。
责任编辑:彭颋