一类非线性四阶离散边值问题正解的存在性
2023-04-29赵亚丽陈天兰
赵亚丽 陈天兰
本文研究了非线性四阶差分方程边值问题
Δ4u(t-2)+fu(t)=0,t∈T2=2,3,…,T-1,u(0)=Δu(0)=Δu(T)=Δ2u(0)=0
正解的存在性,其中T≥4为固定的正整数,f:0,∞→0,∞连续.主要结果的证明基于Leray-Schauder不动点定理.
四阶差分方程; 格林函数; Leray-Schauder不动点定理; 正解
O175.7A2023.031002
收稿日期: 2022-03-23
作者简介: 赵亚丽(1997-), 女, 甘肃定西人, 硕士研究生, 主要研究方向为差分方程及其应用.E-mail: zylZYL19970807@163.com
通讯作者: 陈天兰. chentianlan511@126com
Existence of positive solutions for a class of fourth-order nonlinear discrete boundary value problems
ZHAO Ya-Li, CHEN Tian-Lan
(School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China)
In this paper, we study the existence of positive solutions for the nonlinear fourth-order difference equation boundary value problem
Δ4u(t-2)+fu(t)=0,t∈T2=2,3,…,T-1,u(0)=Δu(0)=Δu(T)=Δ2u(0)=0,
where T≥4 is a fixed positive integer,f:0,∞→0,∞ is continuous. The proof of the main results is based on the Leray-Schauder fixed point theorem.
Fourth-order difference equation; Greens function; Leray-Schauder fixed point theorem; Positive solution
(2010 MSC 34B15)
1 引 言
四阶非线性差分方程在生态学、经济学、人口动力学等领域有着广泛应用,其边值问题解的存在性广受关注[1-8]. 例如,弹性梁方程就是通过不同边界条件的四阶非线性常微分方程来刻画的. 近年来,对两端简单支撑以及一端简单支撑另一端滑动支撑的弹性梁方程的解的存在性已有大量研究[4-6].
本文的研究对象是边界条件为u(0)=u′(0)=u′(1)=u″(0)=0的非线性四阶常微分方程. 这是一类与弹性梁方程类似的方程. 据我们所知,对其边值问题正解的存在性的研究比较少[9, 10],对其离散形式解的存在性则从未被研究过. 这正是我们的研究目标. 令T≥4为一整数.记T0={0,1,…,T+1},T1={1,2,…,T},T2={2,3,…,T-1}. 我们将运用Leray-Schauder不动点定理来讨论四阶离散问题
赵亚丽, 等: 一类非线性四阶离散边值问题正解的存在性
Δ4u(t-2)+fu(t)=0,t∈T2 (1)u(0)=Δu(0)=Δu(T)=Δ2u(0)=0 (2)
正解的存在性,并讨论该问题所对应的线性问题Δ4u(t-2)+h(t)=0的格林函数的性质.
下面我们概述相关的一些研究.Lu等[4]和Ma等[5]分别运用分歧法和锥上的不动点指数理论研究了两端简单支撑的非线性四阶离散问题
Δ4u(t-2)=λfu(t),t∈T3=2,3,…,T,u(1)=u(T+1)=Δ2u(0)=Δ2u(T)=0
正解的存在性,其中λ>0是参数,f:T3×[0,∞)→[0,∞)连续,且T≥5. He等[6]运用锥上的不动点定理研究了一端简单支撑另一端滑动支撑的非线性四阶离散问题
Δ4u(t-2)-λa(t)fu(t)=0,
t∈T4=2,3,…,T+2,u(0)=Δ2u(0)=ΔuT+1=Δ3u(T-1)=0
正解的存在性,其中λ是特征值,权函数a非负,f:R+→R+连续,且T≥1. 而Benaicha等[9]和Haddouchi[10]则分别运用锥上的不动点定理和Leray-Schauder不动点定理研究了带积分边界条件的四阶常微分方程边值问题
u″″(t)+fu(t)=0,t∈0,1,
u′(0)=u′(1)=u″(0)=0,
u(0)=∫10a(s)u(s)ds
正解的存在性,其中a:0,1→[0,∞),0<∫10a(s)ds<1,f:0,∞→0,∞连续.
受以上文献启发,本文通过建立适当的锥,利用Leray-Schauder不动点定理来研究问题正解的存在性,主要结果如下:
定理1.1 设f:0,∞→0,∞连续,并假设以下条件之一成立:(i)f0=lims→0+f(s)s=0;(ii)f∞=lims→∞f(s)s=0, 则问题(1)(2)至少存在一个正解.
2 预备知识
引理2.1[11] 设X是Banach空间,ΩX是一个凸子集,且0∈Ω. 若A:Ω→Ω是一个全连续算子.则下列结论之一成立:(i)A在Ω中至少有一个不动点;(ii) 集合{x∈Ω:x=λAx,0<λ<1}无界.
引理2.2 设h:T2→R. 则线性边值问题
Δ4u(t-2)+h(t)=0,t∈T2,u(0)=Δu(0)=Δu(T)=Δ2u(0)=0(3)
的解等价于
u(t)=∑T-1s=2G(t,s)h(s),t∈T0(4)
其中
G(t,s)=16T(T-1)t(t-1)(t-2)T+1-s(T-s), 1≤t≤s≤T-1,t(t-1)(t-2)T+1-s(T-s)- T(T-1)(t-s)t-s-1 t-s+1,2≤s≤t≤T.
证明 设u满足式(3).通过对(3)式中的方程进行和分运算,结合u(0)=Δu(0)=Δ2u(0)=0可得
u(t)=t(t-1)(t-2)6Δ3u(0)-
∑t-1s=2(t-s)t-s-1t-s+16h(s)(5)
代入边界条件Δu(t)=0可得
uT+1=T(T-1)T+16Δ3u(0)-
∑Ts=2(T-s)T+1-sT+2-s6h(s),
u(t)=T(T-1)(T-2)6Δ3u(0)-
∑T-1s=2(T-s)T-1-sT+1-s6h(s).
进而解得
Δ3u(0)=∑T-1s=2(T-s)T+1-sT(T-1)h(s)(6)
将(6)式代入(5)式中可得
u(t)=t(t-1)(t-2)6∑T-1s=2(T-s)T+1-sT(T-1)h(s)-∑t-1s=2(t-s)t-s-1t-s+16h(s)=
∑t-1s=2t(t-1)(t-2)(T-s)T+1-s-T(T-1)(t-s)t-s-1t-s+16T(T-1)h(s)+
∑T-1s=tt(t-1)(t-2)(T-s)T+1-s6T(T-1)h(s).
因而u也满足式(4).
另一方面,容易验证式(4)满足式(3).证毕.
引理2.3 格林函数G(t,s)满足如下性质:(i) G(t,s)≥0,s∈T1,t∈T1; (ii) ρ(t)Φ(s)≤G(t,s)≤Φ(s),s∈T1,t∈T1, 其中
ρ(t)=min t(t-1)(t-2)T(T-1)2T-3,
(t-2)T-tT-t+1T(T-1)3T-3,
Φ(s)=s(T-2)(T+1-s)(T-s)12.
证明 (i) 当1≤t≤s≤T-1时,显然有G(t,s)≥0. 当2≤s≤t≤T时,我们分两种情况讨论. 当t-s-1≤0时,显然有G(t,s)≥0;当t-s-1>0时,即t>s+1时,我们有
G(t,s)=t(t-1)(t-2)T+1-s(T-s)-T(T-1)(t-s)t-s-1t-s+16T(T-1)>
t-3t(t-1)T+1-s(T-s)-T(T-1)(t-s)t-s+16T(T-1)=
t-3t2-tT2-2Ts+s2+T-s-T2-Tt2-2ts+s2+t-s6T(T-1)=
t-3s2t2-T2+s2T-t+2stTT-t+sT2-t2+st-T+2tTt-T6T(T-1)=
t-3T-ts21-T-t+s2tT+T+t-1-2tT6T(T-1)=
t-3s-1T-t2tT-sT+t-16T(T-1)>t-3s-1T-t2s+1T-sT-st+s6T(T-1)=
t-3s-1T-tsT-t+2T+s6T(T-1)≥0(7)
故(i)成立.
(ii) 当 1≤t≤s≤T-1时,有
G(t,s)=t(t-1)(t-2)T+1-s(T-s)6T(T-1)≤ss-1s-2T+1-s(T-s)6T(T-1) sT+1-s(T-s)6·T-22=s(T-2)T+1-s(T-s)12. 另一方面, G(t,s)=t(t-1)(t-2)T+1-s(T-s)6T(T-1)≥t(T-1)(t-2)T+1-s(T-s)6T(T-1)· sT-1·T-22T-3=t(t-1)(t-2)s(T-2)T+1-s(T-s)12T(T-1)2T-3. 当2≤s≤t≤T时,有 G(t,s)=t(t-1)(t-2)T+1-s(T-s)-T(T-1)(t-s)t-s-1t-s+16T(T-1)≤ t(t-1)(t-2)T+1-s(T-s)6T(T-1)≤(T-2)T+1-s(T-s)6≤s(T-2)T+1-s(T-s)12. 另一方面,类似(7)式的处理方法,有 G(t,s)=t(t-1)(t-2)T+1-s(T-s)-T(T-1)(t-s)t-s-1t-s+16T(T-1)> (t-2)[t(t-1)T+1-s(T-s)-T(T-1)(t-s)t-s+1]6T(T-1)= (t-2)s-1T-t[2tT-sT+t-1]6T(T-1)≥ss-1(t-2)T-tT-t+16T(T-1)≥ s(t-2)T-tT-t+16T(T-1)>s(t-2)T-tT-t+16T(T-1)·T-22T-3·T+1-sT-1· T-sT-1=(t-2)T-tT-t+1s(T-2)T+1-s(t-s)12T(T-1)3T-3. 故(ii)成立. 证毕. 引理2.4 设h:T2→0,∞.Symbol`@@则问题(3)式的唯一解u非负,且满足mint∈T2 u(t)≥ρu, 其中ρ=mint∈T2 ρ(t). 证明 由引理2.2和引理2.3可知u(t)非负,且对任意t∈T1有 u(t)=∑T-1s=2G(t,s)h(s)≤ ∑T-1s=2s(T-2)T+1-s(T-s)12h(s)= (T-2)12∑T-1s=2sT+1-s(T-s)h(s). 进而有 u≤(T-2)12∑T-1s=2sT+1-s(T-s)h(s). 另一方面, u(t)=∑T-1s=2G(t,s)h(s)≥ ∑T-1s=2ρ(t)s(T-2)T+1-s(T-s)12h(s)= ρ(t)(T-2)12∑T-1s=2sT+1-s(T-s)h(s)≥ ρ(t)u≥ρu. 故mint∈T2 u(t)≥ρu. 证毕. 下面我们引入本文使用的空间. 定义空间 E={u:T0→R|u(0)=Δu(0)=Δu(T)= Δ2u(0)=0}, 其在范数u=maxt∈T0|u(t)|下构成Banach空间. 定义锥KE, K=u∈E|u(t)≥0,mint∈T2 u(t)≥ρu. 定义非线性算子A:E→E, Au(t)=∑T-1s=2G(t,s)f(u(s)),t∈T0. 依据引理2.2,我们很容易得到如下结论: 引理2.5 若f:0,∞→0,∞连续,则u(t)是问题(1)-(2)的正解当且仅当Au=u. 引理2.6 若f:0,∞→0,∞连续,则算子A:K→K全连续且A(K)K. 证明 由引理2.4可知,A(K)K. 又因E为有限维空间,结合f的连续性易证A:K→K是全连续的.证毕. 3 主要结果的证明 (i) 因为f0=0,则对任意0<ε≤1∑T-1s=2g(s)可取R1>0,使得当0 Au(t)=∑T-1s=2G(t,s)f(u(s))≤ ∑T-1s=2s(T-2)T+1-s(T-s)12fu(s)= ∑T-1s=2g(s)f(u(s))(8) 其中g(s)=(T-2)12s(T+1-s)(T-s). 故 Au≤∑T-1s=2g(s)f(u(s))(9) 由引理2.4和(9)式可知Au(t)≥0,且对任意t∈T2有 Au(t)=∑T-1s=2G(t,s)f(u(s))≥ ∑T-1s=2ρ(t)s(T-2)T+1-s(T-s)12fu(s) =ρ(t)∑T-1s=2g(s)f(u(s))≥ρAu. 因此,mint∈T2 Au(t)≥ρAu. 另一方面,由(8)式可得 Au(t)≤∑T-1s=2g(s)f(u(s))≤εu∑T-1s=2g(s)≤ u≤R1. 因此 Au≤R1. 则A(Ω)Ω.由Arzelà-Ascoli定理可知A:Ω→Ω是全连续的. 令 ω=u∈Ω:u=λAu,0<λ<1(10) 对任意u∈ω,有u(t)=λAu(t) (ii) 我们分两种情况讨论. 若f有界, 即存在N>0,使得f(u)≤N,u∈0,∞. 对任意u∈K,有Au∈K且A:Ω→Ω是全连续的. 由(8)式可得 Au(t)≤∑T-1s=2g(s)f(u(s))≤N∑T-1s=2g(s). 因此Au≤N∑T-1s=2g(s). 集合ω的定义同式(10). 对任意u∈ω,有 u(t)=λAu(t) 因此u≤N∑T-1s=2g(s),即集合ω有界. 由引理21可知A在Ω中至少有一个不动点,故问题(1)(2)至少存在一个正解. 若f无界,则因f∞=0,对任意0<η≤1∑T-1s=2g(s)存在R2>0,使得当u>R2时有fu≤ηu. 由f连续性可知,存在α>0,使得当0≤u≤R2时有fu≤ηα. 记Ω=u∈K:u≤R,其中R=maxα,R2. 若u∈Ω,则fu≤ηR.由(8)式可得 Au(t)≤∑T-1s=2g(s)f(u(s))≤ηR∑T-1s=2g(s)≤R. 因此Au≤R. 集合ω的定义同式(10). 对任意u∈ω,有u(t)=λAu(t) 4 结 论 我们通过研究问题(1)(2)的线性化问题(3)的格林函数,运用Leray-Schauder不动点定理证明问题至少存在一个正解,从而为差分方程边值问题正解的存在性提供了一个新思路. 在从实际问题抽象出来的数学方程中,单个因素对系统平衡态的影响一般作为参数进行研究. 我们期望在以后的研究中考虑满足边界条件(2)的含参数的四阶离散边值问题正解的存在性,以及正解存在时的最优参数区间. 参考文献: [1] Chen T L, Ma R Y, Liang Y W. Multiple positive solutions of second-order nonlinear difference equations with discrete singular φ-Laplacian [J]. J Differ Equ Appl, 2019, 25: 38. [2] Ma R Y.Nonlinear discrete Sturm-Liouville problems at resonance [J]. Nonlinear Anal: Theor, 2007, 67: 3050. [3] Graef J R, Heidarkhani S, Kong L J, et al. Existence of solutions to a discrete fourth order boundary value problem [J]. J Differ Equ Appl, 2018, 24: 849. [4] Lu Y Q, Ma R Y. The continuum branch of positive solutions for discrete simply supported beam equation with local linear growth condition [J]. Bound Value Probl, 2018, 2018: 192. [5] Ma R Y, Xu Y J. Existence of positive solution for nonlinear fourth-order difference equations [J]. Comput Math Appl, 2010, 59: 3770. [6] He Z M, Yu J S. On the existence of positive solutions of fourth-order difference equations [J]. Appl Math Comput, 2005, 161: 139. [7] Xu Y J, Gao C H, Ma R Y. Solvability of a nonlinear fourth-order discrete problem at resonance [J]. Appl Math Comput, 2010, 216: 662. [8] Graef J R, Kong L J, Liu X Y. Existence of solutions to a discrete fourth order periodic boundary value problem [J]. J Differ Equ Appl, 2016, 22: 1167. [9] Benaicha S, Haddouchi F. Positive solutions of a nonlinear fourth-order integral boundary value problem [J]. An Univ Vest Timis Ser Mat: Inform, 2016, 54: 73. [10] Haddouchi F. A note on existence results for a nonlinear fourth-order integral boundary value problem [J]. Bul Acad Stiinte Repub Mold Mat, 2019, 91: 3. [11] Granas A, Dugundji J. Fixed point theory [M]. New York: Springer-Verlag, 2003. 引用本文格式: 中 文: 赵亚丽, 陈天兰. 一类非线性四阶离散边值问题正解的存在性[J]. 四川大学学报: 自然科学版, 2023, 60: 031002. 英 文: Zhao Y L, Chen T L. Existence of positive solutions for a class of fourth-order nonlinear discrete boundary value problems [J]. J Sichuan Univ: Nat Sci Ed, 2023, 60: 031002.