白色脂肪棕色化对非酒精性脂肪性肝病的影响
2023-04-29赵晨露周铖尚东方刘素彤石俊豪王晓杰赵文霞
赵晨露 周铖 尚东方 刘素彤 石俊豪 王晓杰 赵文霞
摘要:非酒精性脂肪性肝病(NAFLD)是由于脂肪代谢功能异常而出现大量脂肪类物质在肝细胞中蓄积的慢性肝病。常规的抗炎降酶治疗效果不佳,恢复人体脂类物质的正常生物合成与代谢是NAFLD的治疗关键。棕色脂肪已被证明可通过增强机体胰岛素敏感性、调节脂质代谢而改善代谢相关性疾病,促进人体白色脂肪棕色化治疗NAFLD受到了医学界的广泛关注。本文重点综述了白色脂肪棕色化改善NAFLD的作用机制,总结了促进白色脂肪棕色化的肝因子,为NAFLD的临床治疗提供新思路。
关键词:非酒精性脂肪性肝病; 脂肪组织, 白色; 脂肪组织, 棕色; 脂肪组织, 米色
基金项目:国家自然科学基金面上项目(81473651); 河南省特色骨干学科中医学学科建设项目(STG-ZYXKY-2020024)
Influence of white fat browning on nonalcoholic fatty liver disease
ZHAO Chenlu1, ZHOU Cheng1, SHANG Dongfang2, LIU Sutong2, SHI Junhao1, WANG Xiaojie1, ZHAO Wenxia2. (1. The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou 450046, China; 2. Department of Hepatology and Spleen-Stomach, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China)
Corresponding author:
ZHAO Wenxia, zhao-wenxia@163.com (ORCID:0000-0001-6666-9469)
Abstract:
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease in which a large amount of fat accumulates in hepatocytes due to lipid metabolism disorders. Conventional anti-inflammatory and transaminase-lowering treatment regimens often have an unsatisfactory therapeutic effect, and restoring the normal biosynthesis and metabolism of lipids is the key to the treatment of NAFLD. Studies have shown that brown adipose tissue can improve metabolic diseases by enhancing insulin sensitivity and regulating lipid metabolism, and the treatment of NAFLD by promoting white fat browning has attracted wide attention in the medical field. This article reviews the mechanism of white fat browning in improving NAFLD and summarizes the hepatokines that can promote white fat browning, so as to provide new ideas for the clinical treatment of NAFLD.
Key words:
Non-alcoholic Fatty Liver Disease; Adipose Tissue, White; Adipose Tissue, Brown; Adipose Tissue, Beige
Research funding:
General Project of National Natural Science Foundation of China (81473651); Subject Construction Project of Traditional Chinese Medicine in Henan Province (STG-ZYXKY-2020024)
非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)是常見的慢性肝病,以脂肪的异位沉积导致肝脏脂肪变为初始事件,可逐渐发展为肝纤维化、肝硬化甚至肝细胞癌[1]。预计未来十年NAFLD可能逐渐成为终末期肝病、肝移植的主要病因之一[2]。我国NAFLD总体患病率为29.6%,且与肥胖率的上升趋势是平行的[3]。2020年国际专家小组建议将NAFLD更名为代谢相关脂肪性肝病(Metabolic associated fatty liver disease,MAFLD),将代谢功能障碍明确列为脂肪性肝病的重要病因[4-5]。NAFLD不仅与肝脏脂代谢障碍相关,更与脂肪组织代谢紊乱密切相关。研究[6]发现白色脂肪棕色化既可减少脂肪的过度积累,又可增加脂肪的消耗,可从源头防止NAFLD的发生,因此促进白色脂肪棕色化成为NAFLD研究的新领域。
1 脂肪组织概述
脂肪组织主要分为白色脂肪组织(white adipose tissue,WAT)、棕色脂肪组织(brown adipose tissue,BAT),以及介于他们之间的米色脂肪组织。WAT是脂质储存和动员的主要场所,以甘油三酯(TG)的形式储存葡萄糖和脂肪酸中所含的能量,以游离脂肪酸(free fatty acid,FFA)的形式释放能量[7]。此外,WAT还参与激素分泌、免疫功能等。BAT主要用于能量消耗并利用化学能进行产热,棕色脂肪细胞由多房脂滴和丰富的线粒体组成,其中含有解偶联蛋白1(uncoupling protein-1,UCP1)。它位于线粒体内膜,能够将体内生物能转化为热能并释放出来,是产热过程中重要的调节因子[8]。米色脂肪组织的形态与BAT类似,经常在WAT中发现米色脂肪,很多研究认为米色脂肪是WAT演化而来,也被称作WAT与BAT的过渡组织[9]。
白色脂肪棕色化是指白色脂肪细胞具有很高的可塑性,在运动、冷暴露、肾上腺素受体受刺激等因素的刺激下,可转分化为与棕色脂肪细胞具有许多相似形态和功能特性的米色脂肪细胞[10]。由于BAT具有产热生热的功能,促进TG清除和葡萄糖代谢,因而白色脂肪棕色化是一种促进白色脂肪消耗并加快人体新陈代谢的良好方法[11]。
2 白色脂肪棕色化改善胰島素抵抗
NAFLD发病机制从经典“二次打击”学说过渡到“多次打击”学说,但胰岛素抵抗仍是NAFLD发生过程中的重要环节[12]。胰岛素抵抗是指胰岛素作用的靶器官(肝脏、脂肪组织、骨骼肌等)对胰岛素的敏感性或反应性下降,即正常剂量的胰岛素产生低于正常生物学效应的一种状态。NAFLD发生过程中存在肝脏、脂肪组织、骨骼肌胰岛素抵抗。研究[13]显示,白色脂肪棕色化有助于改善全身胰岛素抵抗。
2.1 白色脂肪棕色化改善胰岛β细胞功能 BAT是对胰岛素最敏感的组织之一,尤其是在交感神经激活状态下[13]。BAT葡萄糖摄取率接近于观察到的人类癌旁组织,BAT对胰岛素的高敏感性使葡萄糖摄取增加5倍,而在冷暴露条件下,大量BAT激活产热增加,葡萄糖摄取增加12倍[14]。临床通过FDG-PET/CT检测证实有BAT个体的空腹血糖水平低于无BAT个体[15]。基础研究[16]发现,活化的BAT可吸收、利用葡萄糖和脂质,从而改善胰岛β细胞功能,减少胰岛β细胞对胰岛素分泌的需求。除了经典的BAT激活能够调节胰岛素分泌和葡萄糖稳态外,白色脂肪棕色化在控制体质量、调节能量平衡和改善糖代谢方面也发挥着重要作用。白色脂肪发生棕色化后加速循环葡萄糖和脂质的吸收,增加能量消耗和产热,间接地提高了葡萄糖耐量、胰岛素敏感性和β细胞功能[17]。
2.2 白色脂肪棕色化提高代谢组织胰岛素敏感性 多项研究[18-19]均表明,内源性及外源性因子激活不同的信号通路促进BAT激活或白色脂肪棕色化,进而提高葡萄糖耐量和脂肪组织、骨骼肌的胰岛素敏感性。如成纤维细胞生长因子21(fibroblast growth factor 21, FGF21)通过肝脏内分泌和脂肪组织自分泌形式促进白色脂肪棕色化,促进脂肪细胞葡萄糖转运蛋白1(glucose transporter 1,GLUT1)和GLUT4表达,加速葡萄糖向细胞内转运,降低血糖水平[20]。冷暴露活化β3-肾上腺素能受体促进白色脂肪棕色化,激活BAT,增加葡萄糖氧化和进入线粒体三羧酸循环的葡萄糖通量,调节全身血糖平衡[21]。
3 白色脂肪棕色化减少肝脏脂质沉积
肝脏是脂肪吸收、合成、分解与运输的中心场所。经肠道消化的脂质以甘油和FFA形式由门静脉到达肝脏,在肝细胞胞浆内合成TG,并以TG-VLDL形式输出肝外供其他组织利用[22]。脂肪组织是人体储存脂肪和脂肪动员的重要器官。随着饮食结构改变,机体常常处于能量过剩状态,大量脂质输送至脂肪组织[23]。脂肪细胞虽然发生肥大或增生,但血管生成不足,引起缺氧和炎症反应,造成脂肪组织功能障碍[24]。主要表现为:(1)储脂能力下降,多余的脂质经由门静脉重新导向肝脏,造成脂肪在肝脏的过量堆积[25];(2)胰岛素敏感性下降,脂肪分解增加,产生的FFA大量涌入肝脏,研究[26]发现脂肪组织分解来源的FFA占肝脏FFA通量的59%,加重肝脏脂代谢负担;(3)分泌功能下降,脂肪因子分泌减少,其促进肝脏脂代谢作用下降[27]。当大量FFA超出肝脏合成、运输及氧化分解能力时,造成FFA、TG堆积,导致NAFLD发生。同时FFA产生的脂毒性破坏线粒体功能,发生氧化应激和脂质过氧化[28],诱导炎性因子生成增加,使脂肪变性的肝脏呈现瀑布型炎症反应,诱发细胞死亡,加重NAFLD发展。
研究[29]表明,BAT移植能够防止肥胖小鼠体质量增加、降低总脂肪重量并增加耗氧量,从而改善胰岛素抵抗和肝脏脂肪变性。而且BAT移植可提高循环脂联素水平,增加WAT中β-肾上腺素能受体和脂肪酸氧化相关基因的表达,降低循环FFA、TG水平[30]。多种因素促进白色脂肪棕色化后均能抑制高脂饮食诱导的肝脏脂肪沉积,降低体质量。如大黄素促进皮下白色脂肪棕色化,降低了高脂饮食诱导的肥胖小鼠的体质量和摄食量,提高糖耐量,降低血脂[31]。鸢尾素激活的米色脂肪细胞通过快速消耗葡萄糖和脂肪来增加产热,从而促进体质量下降[32]。以上表明,白色脂肪棕色化或者BAT激活主要通过消耗脂肪促使产热增加,减少白色脂肪体积和重量,达到降低体质量目的;同时脂肪消耗减少循环FFA水平,肝脏摄取的FFA减少,在一定程度上阻止了肝脏的脂肪沉积。
4 促进白色脂肪棕色化的肝因子
肝细胞因子是肝脏通过自分泌、旁分泌和内分泌途径分泌的蛋白质,在肝脏、脂肪组织代谢中起重要作用。FGF21、骨形态发生蛋白(bone morphogenetic protein, BMP)9、中脑星形胶质细胞源性神经营养因子(mesencephalic astrocyte-derived neurotrophic factor,Manf)、激活素E(Activin E)等均可促进白色脂肪棕色化,已成为肝脏和脂肪组织对话关系的桥梁。
4.1 FGF21 FGF21是FGF家族成员之一,主要由肝脏分泌,并在脂肪组织和其他组织中表达[33]。FGF21需要与位于细胞膜上的辅助受体β-klotho结合,共同激活成纤维细胞因子受体1(fibroblast growth factor receptor 1,FGFR1),FGF21的C端與β-klotho相结合,N端与FGFR1相结合,进而形成稳定FGF21/β-klotho/FGFR1复合体[34],共同激活下游丝裂原激活的蛋白激酶/MAP激酶(mitogen-activated protein kinase,MAPK)、PR结构域蛋白16(PR domain-containing 16,PRDM16)、过氧化物酶体增殖物激活受体γ共激活剂1α(peroxisome proliferator-activated receptor gamma coactivator 1α,PGC1α)、过氧化物酶体增殖物激活受体γ(peroxisome proliferator-activated receptor-γ,PPARγ)途径,进而刺激UCP1表达,激活BAT活性和WAT褐变[35]。临床研究[36]显示,FGF21类似物LY2405319可改善肥胖的2型糖尿病患者的血脂水平及体质量。
4.2 BMP9 BMP9属于TGFβ超家族成员。BMP9是肝脏分泌的蛋白,以自分泌或旁分泌形式通过血液到达全身发挥多种生理功能[37]。葡萄糖、胰岛素是上调肝脏BMP9表达的主要调控因子,胰岛素抵抗模型大鼠肝脏BMP9表达明显降低[38]。BMP9主要通过Smad依赖型通路和非Smad依赖型通路(如ERK1/2、ERK5、JNKs和p38MAPK通路)调控靶基因的转录和表达[39]。小鼠腹腔注射外源性BMP9重组衍生物(200 mg·kg-1·周-1)能降低高脂饮食诱导的肥胖小鼠的体质量[40]。BMP9不仅能减少白色脂肪细胞的大小,阻碍脂肪质量增加,而且能够诱导皮下WAT发生褐变,抑制高脂饮食小鼠肥胖的发生[41]。肥胖小鼠皮下注射外源性BMP9重组衍生物可提高脂肪组织中UCP1 mRNA和CD137 mRNA的表达[40]。前者与WAT线粒体功能相关,后者与糖耐量相关。BMP9能够在体外促进棕色脂肪细胞的生成,其机制与Smad依赖型通路激活密切相关[37]。
4.3 Manf Manf是一种分泌蛋白,其N端结构域和saposin样蛋白同源,含有21个氨基酸的分泌信号肽序列,可与脂质和细胞膜相结合,C端结构域与SAP蛋白超家族同源[42]。临床研究[43]表明,血清Manf水平与BMI、体脂百分比、胰岛素抵抗稳态模型评估呈负相关。肝脏过表达Manf可减少高脂饮食诱导的肥胖,其附睾、腹股沟处WAT重量明显低于野生型小鼠,且脂肪细胞的大小更小[44]。进一步研究[45]发现,肝脏过表达Manf小鼠耗氧量、能量消耗持续增加,WAT中UCP1、PGC1α mRNA和蛋白表达显著增加。体外研究[44]证实,Manf通过p38 MAPK/ATF2通路促进下游UCP1、PGC1α、CIDEA表达,诱导原代脂肪细胞发生棕色化。
4.4 Activin E Activin E是由TGFβ超家族成员βE抑制素基因编码的肽,其分泌水平受机体营养状况调控。摄入高脂肪饮食会增加抑制素βE mRNA表达,从而促进Activin E分泌[45]。体内研究[46]显示,肝脏过表达Activin E小鼠的腹股沟WAT、肠系膜WAT中的线粒体密度增加,UCP1、FGF21和BMP8b表达明显高于对照组小鼠。其中BMP8b在成熟的棕色脂肪细胞中表达,能够放大棕色脂肪组织中的产热反应。此外,体外研究[46]表明Activin E可直接上调UCP1和FGF21表达,促进白色脂肪细胞向棕色脂肪细胞分化。
5 小结与展望
白色脂肪棕色化对全身糖脂代谢、维持机体能量平衡方面具有重要作用,目前对其研究重点关注了促进白色脂肪棕色化的各种因素,直接或间接探讨其对肥胖和2型糖尿病的防治作用。白色脂肪棕色化不仅仅是脂肪组织本身的代谢变化,更与肝脏、胰腺、心血管、肌肉等组织存在串扰关系。肝因子作为促进白色脂肪的重要因素,逐渐成为该领域的研究热点,但肝因子在肝脏的亚细胞表达位点有待深入研究。未来应该更加关注白色脂肪棕色化和其他代谢组织之间的相互作用,阐明其具体机制,加强脂肪组织和肝脏等其他组织之间的关系,为包括NAFLD在内代谢性疾病的临床治疗提供更多的实验依据。
利益冲突声明:所有作者均声明不存在利益冲突。
作者贡献声明:赵晨露负责查阅文献和撰写文章;周铖、尚东方、刘素彤、石俊豪、王晓杰负责查阅收集文献;赵文霞负责拟定写作思路,指导文章修改与定稿。
参考文献:
[1]
National Workshop on Fatty Liver and Alcoholic Liver Disease,Chinese Society of Hepatology,Chinese Medical Association; Fatty Liver Expert Committee,Chinese Medical Doctor Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease: A 2018 update[J]. J Clin Hepatol, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34(5): 947-957. DOI: 10.3969/j.issn.1001-5256.2018.05.007.
[2]BRAILLON A. Nonalcoholic steatohepatitis and hepatocellular carcinoma: Crying wolf or promoting healthy living?[J]. Clin Gastroenterol Hepatol, 2019, 17(11): 2383. DOI: 10.1016/j.cgh.2019.04.029.
[3]ZHOU J, ZHOU F, WANG W, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology, 2020, 71(5): 1851-1864. DOI: 10.1002/hep.31150.
[4]ESLAM M, SANYAL AJ, GEORGE J, et al. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7): 1999-2014. e1. DOI: 10.1053/j.gastro.2019.11.312.
[5]ZENG J, FAN JG. Clinical significance of renaming nonalcoholic fatty liver disease[J]. J Clin Hepatol, 2020, 36(6): 1205-1207. DOI: 10.3969/j.issn.1001-5256.2020.06.002.
曾靜, 范建高. 非酒精性脂肪性肝病更名的临床意义[J]. 临床肝胆病杂志, 2020, 36(6): 1205-1207. DOI: 10.3969/j.issn.1001-5256.2020.06.002.
[6]MICHURINA SS, STAFEEV IS, MENSHIKOV MY, et al. Mitochondrial dynamics keep balance of nutrient combustion in thermogenic adipocytes[J]. Mitochondrion, 2021, 59: 157-168. DOI: 10.1016/j.mito.2021.05.001.
[7]QIAN S, TANG Y, TANG QQ. Adipose tissue plasticity and the pleiotropic roles of BMP signaling[J]. J Biol Chem, 2021, 296: 100678. DOI: 10.1016/j.jbc.2021.100678.
[8]WANG Z, WANG QA, LIU Y, et al. Energy metabolism in brown adipose tissue[J]. FEBS J, 2021, 288(12): 3647-3662. DOI: 10.1111/febs.16015.
[9]PILKINGTON AC, PAZ HA, WANKHADE UD. Beige adipose tissue identification and marker specificity-overview[J]. Front Endocrinol (Lausanne), 2021, 12: 599134. DOI: 10.3389/fendo.2021.599134.
[10]TABUCHI C, SUL HS. Corrigendum: Signaling pathways regulating thermogenesis[J]. Front Endocrinol (Lausanne), 2021, 12: 698619. DOI: 10.3389/fendo.2021.698619.
[11]KAISANLAHTI A, GLUMOFF T. Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes[J]. J Physiol Biochem, 2019, 75(1): 1-10. DOI: 10.1007/s13105-018-0658-5.
[12]
LIU Q, NIU CY. From “two hit theory” to “multiple hit theory”: Implications of evolution of pathogenesis concepts for treatment of non-alcoholic fatty liver disease[J]. World Chin J Dig, 2019, 27(19): 1171-1178. DOI: 10.11569/wcjd.v27.i19.1171.
刘勤, 牛春燕. 由“二次打击”到“多重打击”:发病机制的演变带给非酒精性脂肪性肝病的治疗启示[J]. 世界华人消化杂志, 2019, 27(19): 1171-1178. DOI: 10.11569/wcjd.v27.i19.1171.
[13]CANNON B, NEDERGAARD J. Brown adipose tissue: function and physiological significance[J]. Physiol Rev, 2004, 84(1): 277-359. DOI: 10.1152/physrev.00015.2003.
[14]ORAVA J, NUUTILA P, LIDELL ME, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin[J]. Cell Metab, 2011, 14(2): 272-279. DOI: 10.1016/j.cmet.2011.06.012.
[15]ZHANG Q, YE H, MIAO Q, et al. Differences in the metabolic status of healthy adults with and without active brown adipose tissue[J]. Wien Klin Wochenschr, 2013, 125(21-22): 687-695. DOI: 10.1007/s00508-013-0431-2.
[16]SHANKAR K, KUMAR D, GUPTA S, et al. Role of brown adipose tissue in modulating adipose tissue inflammation and insulin resistance in high-fat diet fed mice[J]. Eur J Pharmacol, 2019, 854: 354-364. DOI: 10.1016/j.ejphar.2019.02.044.
[17]MA J, WANG Y, DING J, et al. SAHA induces white fat browning and rectifies metabolic dysfunctions via activation of ZFPs[J]. J Endocrinol, 2021, 249(3): 177-193. DOI: 10.1530/JOE-20-0472.
[18]PENG WQ, XIAO G, LI BY, et al. l-Theanine activates the browning of white adipose tissue through the AMPK/α-Ketoglutarate/Prdm16 axis and ameliorates diet-induced obesity in mice[J]. Diabetes, 2021, 70(7): 1458-1472. DOI: 10.2337/db20-1210.
[19]CHEN CC, KUO CH, LEU YL, et al. Corylin reduces obesity and insulin resistance and promotes adipose tissue browning through SIRT-1 and β3-AR activation[J]. Pharmacol Res, 2021, 164: 105291. DOI: 10.1016/j.phrs.2020.105291.
[20]HSU JW, YEH SC, TSAI FY, et al. Fibroblast growth factor 21 secretion enhances glucose uptake in mono(2-ethylhexyl)phthalate-treated adipocytes[J]. Toxicol In Vitro, 2019, 59: 246-254. DOI: 10.1016/j.tiv.2019.04.021.
[21]WANG Z, NING T, SONG A, et al. Chronic cold exposure enhances glucose oxidation in brown adipose tissue[J]. EMBO Rep, 2020, 21(11): e50085. DOI: 10.15252/embr.202050085.
[22]SEEBACHER F, ZEIGERER A, KORY N, et al. Hepatic lipid droplet homeostasis and fatty liver disease[J]. Semin Cell Dev Biol, 2020, 108: 72-81. DOI: 10.1016/j.semcdb.2020.04.011.
[23]GOOSSENS GH. The metabolic phenotype in obesity: Fat mass, body fat distribution, and adipose tissue function[J]. Obes Facts, 2017, 10(3): 207-215. DOI: 10.1159/000471488.
[24]REYES-FARIAS M, FOS-DOMENECH J, SERRA D, et al. White adipose tissue dysfunction in obesity and aging[J]. Biochem Pharmacol, 2021, 192: 114723. DOI: 10.1016/j.bcp.2021.114723.
[25]CORRA LH, HEYN GS, MAGALHAES KG. The impact of the adipose organ plasticity on inflammation and cancer progression[J]. Cells, 2019, 8(7): 662. DOI: 10.3390/cells8070662.
[26]PIERANTONELLI I, SVEGLIATI-BARONI G. Nonalcoholic fatty liver disease: Basic pathogenetic mechanisms in the progression from NAFLD to NASH[J]. Transplantation, 2019, 103(1): e1-e13. DOI: 10.1097/TP.0000000000002480.
[27]MORIGNY P, BOUCHER J, ARNER P, et al. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics[J]. Nat Rev Endocrinol, 2021, 17(5): 276-295. DOI: 10.1038/s41574-021-00471-8.
[28]di CIAULA A, PASSARELLA S, SHANMUGAM H, et al. Nonalcoholic fatty liver disease (NAFLD). Mitochondria as players and targets of therapies?[J]. Int J Mol Sci, 2021, 22(10): 5375. DOI: 10.3390/ijms22105375.
[29]STANFORD KI, MIDDELBEEK RJ, TOWNSEND KL, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity[J]. J Clin Invest, 2013, 123(1): 215-223. DOI: 10.1172/JCI62308.
[30]LIU X, WANG S, YOU Y, et al. Brown adipose tissue transplantation reverses obesity in Ob/Ob mice[J]. Endocrinology, 2015, 156(7): 2461-2469. DOI: 10.1210/en.2014-1598.
[31]CHENG L, ZHANG S, SHANG F, et al. Emodin improves glucose and lipid metabolism disorders in obese mice via activating brown adipose tissue and inducing browning of white adipose tissue[J]. Front Endocrinol (Lausanne), 2021, 12: 618037. DOI: 10.3389/fendo.2021.618037.
[32]CHEN Y, ZHAO YF, PENG XG, et al. Effect of irisin on fat and glucose and lipid metabolism in diet-induced obese mice[J]. Natl Med J China, 2021, 101(16): 1165-1170. DOI: 10.3760/cma.j.cn112137-20200902-02534.
陳月, 赵宇飞, 彭新桂, 等. 鸢尾素对小鼠脂肪的作用及对饮食诱导肥胖小鼠糖脂代谢的影响[J]. 中华医学杂志, 2021, 101(16): 1165-1170. DOI: 10.3760/cma.j.cn112137-20200902-02534.
[33]YAN J, NIE Y, CAO J, et al. The roles and pharmacological effects of FGF21 in preventing aging-associated metabolic diseases[J]. Front Cardiovasc Med, 2021, 8: 655575. DOI: 10.3389/fcvm.2021.655575.
[34]MOURE R, CAIR M, MORN-ROS S, et al. Levels of β-klotho determine the thermogenic responsiveness of adipose tissues: involvement of the autocrine action of FGF21[J]. Am J Physiol Endocrinol Metab, 2021, 320(4): E822-E834. DOI: 10.1152/ajpendo.00270.2020.
[35]FISHER FM, KLEINER S, DOURIS N, et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis[J]. Genes Dev, 2012, 26(3): 271-281. DOI: 10.1101/gad.177857.111.
[36]GAICH G, CHIEN JY, FU H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes[J]. Cell Metab, 2013, 18(3): 333-340. DOI: 10.1016/j.cmet.2013.08.005.
[37]WANG Y, MA C, SUN T, et al. Potential roles of bone morphogenetic protein-9 in glucose and lipid homeostasis[J]. J Physiol Biochem, 2020, 76(4): 503-512. DOI: 10.1007/s13105-020-00763-z.
[38]CAPERUTO LC, ANH GF, CAMBIAGHI TD, et al. Modulation of bone morphogenetic protein-9 expression and processing by insulin, glucose, and glucocorticoids: possible candidate for hepatic insulin-sensitizing substance[J]. Endocrinology, 2008, 149(12): 6326-6335. DOI: 10.1210/en.2008-0655.
[39]HERRERA B, DOOLEY S, BREITKOPF-HEINLEIN K. Potential roles of bone morphogenetic protein (BMP)-9 in human liver diseases[J]. Int J Mol Sci, 2014, 15(4): 5199-5220. DOI: 10.3390/ijms15045199.
[40]KUO MM, KIM S, TSENG CY, et al. BMP-9 as a potent brown adipogenic inducer with anti-obesity capacity[J]. Biomaterials, 2014, 35(10): 3172-3179. DOI: 10.1016/j.biomaterials.2013.12.063.
[41]UM JH, PARK SY, HUR JH, et al. Bone morphogenic protein 9 is a novel thermogenic hepatokine secreted in response to cold exposure[J]. Metabolism, 2022, 129: 155139. DOI: 10.1016/j.metabol.2022.155139.
[42]YANG S, LI S, LI XJ. MANF: A new player in the control of energy homeostasis, and beyond[J]. Front Physiol, 2018, 9: 1725. DOI: 10.3389/fphys.2018.01725.
[43]WEI J, WANG C, YANG G, et al. Decreased circulating MANF in women with PCOS is elevated by metformin therapy and is inversely correlated with insulin resistance and hyperandrogenism[J]. Horm Metab Res, 2020, 52(2): 109-116. DOI: 10.1055/a-1082-1080.
[44]WU T, LIU Q, LI Y, et al. Feeding-induced hepatokine, Manf, ameliorates diet-induced obesity by promoting adipose browning via p38 MAPK pathway[J]. J Exp Med, 2021, 218(6): e20201203. DOI: 10.1084/jem.20201203.
[45]HASHIMOTO O, TSUCHIDA K, USHIRO Y, et al. cDNA cloning and expression of human activin betaE subunit[J]. Mol Cell Endocrinol, 2002, 194(1-2): 117-122. DOI: 10.1016/s0303-7207(02)00157-0.
[46]HASHIMOTO O, FUNABA M, SEKIYAMA K, et al. Activin E controls energy homeostasis in both brown and white adipose tissues as a hepatokine[J]. Cell Rep, 2018, 25(5): 1193-1203. DOI: 10.1016/j.celrep.2018.10.008.
收稿日期:
2022-08-02;錄用日期:2022-09-29
本文编辑:林姣