APP下载

弱光胁迫影响玉米产量形成的生理机制及调控效应

2023-01-12孙智超张吉旺

作物学报 2023年1期
关键词:弱光蔗糖籽粒

孙智超 张吉旺

综述

弱光胁迫影响玉米产量形成的生理机制及调控效应

孙智超 张吉旺*

山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018

在全球气候变化背景下, 生育期内光照不足已成为制约玉米产量提高的主要因素之一, 增加了全球粮食生产和营养安全的风险。本文从光合性能、养分吸收特性、籽粒形成与灌浆特性等方面系统总结了弱光胁迫影响玉米产量形成的生理机制。弱光降低了叶片捕光能力, 基质和基粒类囊体结构解体, 相关酶活性降低, 光系统受到损伤, 碳同化能力降低, 进而抑制根系发育, 影响根系形态和功能, 不利于养分吸收和代谢。由于营养供应不足, 雌、雄穗发育受阻, 花粉和花丝的形态功能受到影响, 导致小花受精率低, 穗粒数降低。弱光条件下, 胚乳细胞数量——“库”容量降低, 胚乳传递细胞结构和功能受到影响, 内源激素平衡被打破, 蔗糖-淀粉代谢相关酶活性下降, 茎节维管束数目和面积减少, 物质转运和转化能力降低, 导致淀粉充实状态差, 粒重降低。因此, 为缓解弱光胁迫对玉米产量形成的影响, 亟须创建系统评估耐阴品种的指标, 利用现代育种技术加快培育出高光效耐阴新品种, 采取增施氮肥、去除顶部叶、喷施生长调节剂和叶面肥等栽培措施提高产量。未来研究需要注重根冠协调, 深入探讨弱光胁迫的作用机理, 为玉米抗逆增产关键技术的创建提供理论依据。

弱光胁迫; 人工遮阴; 玉米; 产量; 耐阴性; 生理机制; 调控效应

玉米作为我国第一大粮食作物, 在农业生产和经济发展中发挥着重要作用。光是玉米生长发育不可或缺的气候因子, Chen等[1]研究表明, 太阳辐射每减少1 MJ m−2, 玉米产量降低6%~7%。但近年来由于气候变化等因素, 玉米生育期内日照时数平均降低13%, 太阳辐射平均降低4% (图1, 中国气象数据网, http://data.cma.cn/)。光照不足将成为未来粮食产量进一步提高的重要限制因素。

弱光胁迫对玉米的光合特性、养分吸收特性、籽粒形成与灌浆特性等均有显著影响, 导致产量降低。前人通过人工遮阴的方式模拟寡照天气, 以探究弱光胁迫影响玉米产量形成的生理生态机制。本文主要从大田中模拟弱光胁迫的方法、弱光胁迫影响玉米产量形成的生理机制、提高产量的途径和未来研究展望4个方面进行综述, 以期为耐阴玉米品种选育和应对弱光胁迫关键技术的创建提供科学依据。

1 大田弱光研究方法

前人针对不同的研究对象(单株或群体)和研究内容, 选用的材料和遮阴方式也不同(图2)。Earley等[2]使用木框和金属片来探究产量与遮阴度的关系; Struik[3]、Kiniry等[4]、赵久然等[5]和张吉旺等[6]利用遮阴网以明确弱光胁迫影响产量形成的关键生育时期; Takayuki等[7]通过盆栽试验探索生育后期叶片相互遮挡导致弱光的再适应能力(图2)。人工遮阴试验能否实现遮光处理的唯一差异性尤为重要, 但目前部分试验条件由于一些原因未能实现单一光照变量,主要有以下几点: 不同的遮阴方式产生不同的气候条件, 当用遮阴网把玉米植株的一半或全部覆盖, 其内部的温度和CO2浓度会有所差异; 木框、聚丙烯、聚乙烯、棉布、铝箔纸、尼龙等遮阴材料的材质和颜色不同, 容易改变入射光光质, 影响植株形态; 当试验面积不足时, 随着光照角度不断偏移, 相同处理的植株受光条件不一致, 取样植株不具有代表性; 当遮阴设备的宽度和高度无法满足机械耕作要求时, 人工整地的深度不足, 土壤质量变差, 影响作物根系下扎。

因此, 建议大田遮阴试验在面积较大、土壤理化性质一致的地块上进行, 采用透光率稳定、不改变光质和质量良好的遮阴网, 搭配可拆卸、可升降的支撑架组成遮阴设备。其中遮阴网的覆盖方式应当不改变作物田间气候, 以达到最大程度地模拟自然弱光环境, 尽可能实现光照强度或者光照时间改变的唯一差异性, 增加试验结果的可信度与一致性。

图1 6月至10月的日照时数(1961−2018年)和总太阳辐射(1961−2020年)

2 弱光胁迫影响玉米产量形成的生理机制

2.1 光合特性

光合作用包括原初反应、电子传递、碳同化等步骤, 是玉米干物质积累最基本的方式, 也是对环境变化最敏感的代谢过程。不同于高温等氧化胁迫带来的伤害, 弱光胁迫对光合性能的影响在于结构形成。由于光照不足, 单位叶面积的叶肉细胞和叶绿体数量减少, 内部类囊体结构部分解体, 基粒类囊体数量减少且排列疏松, 片层松散[12](图3-a~d)。位于类囊体膜上的叶绿素等聚光色素含量降低[13], 导致叶片捕光能力降低。叶绿素尤其是叶绿素含量降低可能与参与卟啉和叶绿素代谢基因下调有关[14]。反应中心色素含量减少, 氧化激发出的电子也相应减少。弱光胁迫显著下调玉米光系统II中的、、、和, 光系统I中的, 细胞色素复合体b6/f中的等基因[14], 导致反应中心亚基及电子受体数量减少。两系统间电子传递受阻, 光化学效率降低[15-17]。

在暗反应中, 磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase, PEPC)相关基因表达易受光强影响[18], 核酮糖-1,5-二磷酸羧化酶(ribulose-1,5-bisphosphate carboxylase/oxygenase,Rubisco)的活化又受限于依赖光照的三磷酸腺苷(adenosine triphosphate, ATP)[19]。在低光照条件下, Rubisco、PEPC、苹果酸酶(NADP-malic enzyme, NADP-ME)等光合酶活性显著降低[13,20], 光合产物输出减少且速率变慢。并且叶绿体中发现淀粉粒增大[21], 可能是弱光胁迫改变了磷酸丙糖转运蛋白(triose phosphate translocator, TPT)活性, 进而改变了淀粉与蔗糖的合成比例[22], 出现“淀粉阻塞”现象, 减少了对其他器官的蔗糖供应, 限制作物生长。

叶片是植物截获光能的物质载体, 光照不足导致类囊体结构松散、光合酶活性降低, 光合产物供应不足, 降低叶片生长速率和叶面积指数(leaf area index, LAI)[13], 进一步限制光能截获。玉米叶片生长响应差异是光合碳同化能力差异的结果。综合来看, 叶片整体光合性能降低, 干物质积累量不足且向籽粒分配比例减小, 收获指数和产量显著降低[23]。

2.2 养分吸收特性

根系作为最主要的吸收器官, 其功能期长短决定叶片功能期长短。弱光条件下由于干物质供应不足, 根系发育显著受阻(图3-i, j), 根干重、根长度、根表面积、根体积等指标均下降[24-26], 根系直径和根长密度降低[24-26]。根部细胞呼吸作用放出的CO2溶于水后解离出H+和HCO3-离子, 与土壤溶液和土壤胶粒上吸附的离子进行交换。弱光条件下, 根系碳水化合物浓度下降[27], 根系呼吸速率降低[28], 进而改变了离子交换频率, 导致根系总吸收面积与活跃吸收面积显著降低, 根系活力降低[25], 氮、磷、钾吸收量减少[29], 影响植株正常生长发育。

光照不仅影响根系吸收养分的能力, 对土壤养分循环过程也有影响。在土壤-植物系统中, 土壤微生物通过产生多种调节土壤有机质分解的胞外酶来驱动养分循环。弱光胁迫显著改变了根际土壤微生物细菌、放线菌和真菌数量, 抑制了根际土壤中脲酶的活性, 导致土壤氮含量减少[30]。微生物生命活动能力减弱, 对有机物质的分解速度减慢, 有机质含量减少[31]。微生物生命活动能力减弱还会与作物争夺氮素养分, 形成恶性循环。但Zhou等[32]研究报道, 在弱光缺磷条件下, 玉米接受弱光信号并将更多的光合产物以蔗糖的形式分配给根系, 刺激根系生长, 促进根系对磷的吸收, 是玉米适应弱光胁迫的一种表现。

在根系-微生物-土壤微生态系统中, 弱光胁迫改变了土壤中微生物的数量和结构, 各种酶活性降低, 土壤中有效养分的积累减少。由于干物质供应不足, 根系对养分吸收量减少, 进一步影响地上部生长发育, 产量显著降低。但弱光胁迫导致玉米植株养分含量减少的关键是土壤中养分积累与转化能力减弱还是根系吸收养分的过程受到阻碍?其主导因素及相关机制仍应继续研究。为了改善弱光胁迫带来的“养分胁迫”, 植株内部的同化物分配[32]或根系分泌物对有益微生物的招募[33]等适应机制也需深入挖掘, 为培育高效利用养分的新品种提供理论依据。

2.3 籽粒形成与灌浆特性

弱光胁迫显著降低玉米叶片花后干物质生产能力, 且由于碳、氮积累不足[34], 蔗糖转化酶(sucrose invertase, INV)活性较高[35], 蔗糖磷酸酶(sucrose phosphate synthase, SPS)活性较低[36], 叶片直接利用了原本转运到雌、雄穗的同化物, 导致蔗糖输出量减少。因此, 为满足籽粒发育和灌浆需求, 淀粉酶(amylase)和SPS活性增加[37], 促进碳储备从茎向籽粒的再调动, 同化物转运量增加[23,38], 但仍不能弥补吐丝后干物质生产量在光照不足条件下的产量损失。

蔗糖通过维管束长距离运至籽粒, 经珠心突起细胞后通过胚乳转移细胞进入内胚乳, 在蔗糖-淀粉代谢酶作用下合成淀粉。弱光条件下, 穗柄维管束面积未受光照影响[39], 但基部第3茎节的维管束数目显著减少, 中央大维管束的木质部和韧皮部面积减小[40](图3-e~h), 蔗糖流速受限。弱光胁迫使胚乳传递细胞变小, 传递细胞壁内突变稀、变短[39], 不同层次间连接程度下降。线粒体数量减少, 籽粒中提前形成黑层, 导致籽粒胚乳传递细胞功能期提前结束[41]。弱光胁迫不仅减少了运往籽粒的同化物, 而且限制了蔗糖的长距离运输, 导致供给籽粒利用的蔗糖显著降低。

穗粒数由雌、雄穗开花受精特性决定。弱光条件下雌、雄穗发育和授粉受精过程受到显著影响, 穗粒数显著降低。由于同化物供应不足, 玉米控制穗发育的miR156、miR172表达下调[42], 穗原基分化的总小花数减少[42], 雌、雄穗的发育和分化受阻(图3-e, h), 尤其是小花分化时间的延长, 导致花期不遇[43]。花粉由于淀粉粒数目减少, 营养供应不足, 导致萌发孔及其附近严重畸形及内陷(图3-a~d), 萌发率降低[44]。花丝生长速率减慢, 雌雄间隔期延长[43]。弱光胁迫也显著降低花药开裂率[45], 但具体影响方式还需进一步探索。

粒重是由库容大小和库的充实程度共同决定的,胚乳细胞数目反映库容大小, 灌浆特性反映充实程度。到达籽粒的蔗糖经蔗糖合酶(sucrose synthase, SUS)、腺苷二磷酸葡萄糖焦磷酸化酶(adenosine 5' diphosphate glucose pyrophosphorylase, AGPase)、尿苷二磷酸葡萄糖焦磷酸化酶(uridine diphosphate glucose pyrophosphorylase, UGPase)、可溶性淀粉合成酶(soluble starch synthase, SSS)和淀粉分支酶(starch branching enzyme, SBE)等转化为淀粉。植物激素是一种调节植物生长发育的微量活性物质, 各激素协同作用, 共同调节籽粒形成和灌浆。生长素(IAA)、玉米素(ZR)和赤霉素(GA)和适宜的脱落酸(ABA)含量[46-50]与胚乳细胞分化、增殖和籽粒灌浆速率呈显著正相关, 但ABA是一种反馈调节型激素,超过一定值后ABA会产生抑制作用, 导致籽粒灌浆速率变慢[51]。因此, 猜想籽粒中存在一种灌浆通路: 激素在接收蔗糖信号后, 通过控制蔗糖-淀粉代谢酶活性对淀粉合成起作用。喂养蔗糖弥补籽粒损失试验[52]以及淀粉合成酶含量与激素含量的同步变化曲线[53]进一步证明了此观点, 具体调控机制还需进一步探究。弱光条件下, 供给玉米籽粒的蔗糖减少, IAA、GA和ZR含量降低, ABA含量升高[54], 影响胚乳游离核的分裂和增殖[5], 使胚乳细胞数量减少。并且SUS、SSS、AGP、UGP、SBE等酶活性低[39,55], 灌浆高峰持续期与活跃灌浆期缩短, 最大灌浆速率和平均灌浆速率下降[56], 籽粒充实度不足, 粒重显著降低。蔗糖信号如何调控各激素表达以及激素间相互影响的方式还需进一步探究。籽粒中细胞壁转化酶(cell wall invertase, CWI)等活性降低[38], 不利于蔗糖的卸载。综合来看, 弱光条件下籽粒形成与灌浆受阻多由于蔗糖供应不足、运输受阻、卸载困难、利用率低以及库容限制, 其中喂养蔗糖弥补籽粒损失试验[52]进一步证明蔗糖供应不足是影响穗粒数和粒重的主导因素。

同一果穗不同位置的籽粒存在同化物竞争关系,这在一定程度上制约产量的提高。在籽粒形成和灌浆过程中, 上部籽粒的小花分化比中下部滞后[57], 胚乳细胞数目最少[58], ZR和IAA浓度较低, ABA浓度较高[58-59], 蔗糖-淀粉转化相关酶(SSS、AGP、SUS和SBE)活性及峰值较低[46,58-59], 同化物竞争力弱, 产生较多的未灌浆型败育粒和已灌浆型败育粒。目前, 关于逆境对籽粒发育的研究多集中于果穗中部, 对果穗顶部籽粒的研究较少, 未来应重点改善上部弱势粒的授粉结实特性, 进一步挖掘玉米的高产潜力。

综上所述, 弱光胁迫降低了玉米光合作用, 导致后续一系列生理过程缺乏能量和物质供应, 产量显著降低(表1和图4)。光照减少导致叶绿体内部类囊体发育不良, 光系统间电子传递不协调, ATP和[H]无法满足暗反应的需求, PEPC和Rubisco等关键酶活性降低, 同化能力减弱。各器官发育所需的同化物供应不足, LAI减小, 根系形态和功能受到抑制, 吸收养分的效率降低。由于营养供应不足和同化物利用率低, 开花受精过程受到影响, 内源激素平衡被打破, 蔗糖-淀粉转化相关酶活性降低, 胚乳细胞数目减少, 且淀粉合成不足, 籽粒充实度较差。弱光胁迫最终导致穗粒数和粒重降低, 产量显著降低。

图3 自然光照和弱光条件下玉米根、茎、叶、雌穗、雄穗和花粉的对比

a, d: 花粉的淀粉粒数量; b, c: 花粉的外观扫描结构(800×); e, h: 雌雄穗分化进程; f, g: 果穗; i, j: 叶片横切面(200×); A, D: 叶绿体在叶肉细胞内的分布状况(2500×); B, C: 叶肉细胞的超微结构(25,000×); E, H: 第3茎节中心维管束的结构(100×); F, G: 第3茎节小维管束的结构(100×); I, J: 根横切面(100×)。EP: 表皮细胞; MT: 叶肉细胞; N: 细胞核; Ch: 叶绿体; SL: 基质片层; GL: 基粒片层; Mi: 线粒体; CW: 细胞壁; CM: 细胞膜; Spikelet differentiation: 小穗分化期; Filament elongation: 花丝伸长期; Filament maturation: 吐丝期; Sex organ formation: 性器官形成期; Anther development: 花药发育期。本表部分图片引自高佳等[12]、王群等[25]、周卫霞等[43]、崔海岩等[40]、杜成凤等[60]。

a, d: the number of starch grains in pollen; b, c: scanning structure of pollen appearance (800×); e, h: differentiation process of tassel and ear; f, g: ears; i, j: leaf cross-section (200×); A, D: distribution of Chloroplasts in mesophyll cells (2500×); B, C: ultrastructure of mesophyll cells (25,000×); E, H: the structure of central vascular bundle of the third stem segment (100×); F, G: the structure of small vascular bundle of the third stem segment (100×); I, J: root cross-section (100×). EP: epidermal cell; MT: mesophyll cell; N: nucleus; Ch: chloroplast; SL: stroma lamella; GL: grana lamella; Mi: mitochondria; CW: cell wall; CM: cytomembrane. Some images in this picture were quoted from Gao et al.[12], Wang et al.[25], Cui et al.[40], Zhou et al.[43], and Du et al.[60].

表1 不同遮光时期和遮光率对玉米产量造成的损失

(续表1)

图4 弱光条件下可能影响玉米产量形成的生理机制

3 弱光条件下可能提高玉米产量的途径

光合作用产物是形成作物产量的物质基础, 光能利用率是投射到作物表层的光合有效辐射能被植物转化为化学能的比率。在光照不足的情况下, 提高叶片光截获及光能利用效率, 增加光合产物的积累量, 提高同化物向籽粒的转运比例是增产关键。作物的光截获取决于叶片的大小、分布等因素, 增产需要增加叶片截获光照的时间长度和空间宽度。引用生育期长的品种或喷施植物生长调节剂可有效延缓灌浆期叶片衰老速度, 保持冠层结构不变, 充分利用气候资源, 提高潜在产量。Su等[65]研究报道,引种生长季较长的品种可有效提高作物的辐射和热利用率, 提高产量。外源喷施植酶Q9后, 叶片活性氧清除能力提高, 叶片功能期延长, 粒重增加[66-67]。植物生长调节剂和叶面肥是目前促进作物增产的主要措施, 明确其作用机理及作用有效时间, 对后续新产品的施用方式和粘附时间提供理论指导意义。通过“去源”、改变叶夹角等措施可有效改善叶片分布, 优化作物冠层结构, 尽可能减少叶片间的遮挡面积。去除顶部2片叶能显著改善冠层中下部叶片光照环境, 保证籽粒灌浆期间的光合效率, 提高籽粒灌浆速率, 增加产量[68]。优化综合农艺管理措施(栽培方式、种植密度、施肥管理和收获时间)可以调整冠层结构, 增加光截获, 减少光损失[69]。聚合优势耐阴表观性状以获得高光效耐阴新品种是新时期育种的主要目标。Shi等[70]将LAI (品种A)+氮素利用效率(品种B)+叶角等(品种A)+叶片氮含量(品种A) 4个参数组合, 其产量比品种A和B分别提高了24.1%和134.7%。不同品种的耐阴性状不同, 明确玉米各生育时期的物质需求特性, 准确地将不同品种的“耐阴性状”组合在同一品种, 最大限度地利用光照, 达到弥补干物质需求缺口的目标。

太阳光中约有47%不能被叶片吸收, 剩余53%中约有16%的光能不能被叶片充分吸收, 约有9%的光能吸收后在体内不能有效传递, 约有19%的光能由于耗散等方式不能转化为稳定的化学能, 大约仅有4%和5%的光能用于物质代谢消耗和物质积累[71]。弱光胁迫降低玉米叶片光合性能, 光能利用率将会进一步降低。如何改善植株内部光合性能, 提高光能利用率是下一步增产亟须解决的问题。在弱光条件下, 光受体PHOTO2感受光照强度后, 通过调控定位于叶绿体外膜的CHUP1蛋白, 使叶绿体沿垂直于光线的方向贴细胞壁排列, 增加光能的吸收和利用[72]。在叶绿体发育中起着重要的作用, 遮阴处理后叶片表达减少, 影响叶绿体数量和基质片层发育[73]。若将过表达, 对叶绿体发育不良的问题是否有缓解作用?籼稻和粳稻的耐光性差异在于D1蛋白[71], 明确籼稻是如何调控D1蛋白的表达, 对缓解弱光条件下电子传递受阻有重要意义。增加养分供应也间接提高了作物的光合效率。弱光胁迫下玉米接种摩西球囊霉后, 菌丝会从土壤中摄取各种营养元素供玉米生长, 叶片合成叶绿素的能力提高, 捕光能力增强[74]。适量增施氮肥也促进了根系对氮素的吸收, 增加了叶片中叶绿素含量, 提高光合效率[75]。施氮同时增强了硝酸还原酶(nitrate reductase, NR)、谷氨酰胺合成酶(glutamine synthetase, GS)和SPS的活性, 提高碳氮代谢能力, 增加穗粒数和粒重[76]。发挥其他部位的光合作用也是增产的途径之一。大豆豆荚具有与叶片相似的光合场所和功能, 其光合速率可以弥补叶片衰老后光合性能降低的问题[77]。小麦的芒、颖片、内稃和外稃等均具有较完整的叶绿体结构和进行光合作用的能力[71]。挖掘并提高茎、苞叶等器官光合作用的能力, 为实现籽粒多通道物质积累提供可能。Shi等[78]研究表明, 参与耐阴反应的核心基因除了参与光信号传导(FKF1)外, 占比最大的是IAA (IAA16)。外源喷施6-BA提高了玉米籽粒中IAA含量, 促进籽粒中淀粉积累[79]。乔江方等[80]研究报道, 喷施IAA缓解减产效果最好。目前试验结果直接或间接证明IAA对耐阴反应具有主导作用, 但其对胁迫的应答机制还未清楚。若能明确弱光条件下IAA的传递网络和调控位点, 对夏玉米源、流、库限制的改进将有很大可能性。

4 研究展望

近几十年来, 光照时数和太阳辐射的变化趋势表明弱光胁迫已经成为未来影响玉米产量的重要因素之一。综合前人的研究结果, 对未来发展和研究方向有以下思考和建议:

一是深入和系统研究弱光胁迫影响玉米产量形成的生理生态机制。耐阴性通常被描述为植物在弱光条件下继续生存的能力, 理论上分为适应弱光和回避弱光, 但由于位置的固定性, 作物缺乏回避弱光的能力, 对弱光的响应多被归为第一类。例如, 玉米接受弱光信号后, 将更多的光合产物以蔗糖的形式分配给根系, 刺激根系生长, 促进玉米根系对磷的吸收[32]。目前关于玉米适应弱光胁迫的机制报道较少, 未来应深入研究弱光胁迫是如何影响产量形成以及植株内部是如何启动“防御机制”来适应弱光。作物生长需要地上部与地下部的协同发展, 但目前研究多集中于地上部, 关于地下部以及整株联动的研究鲜见报道。光照减少改变土壤温、湿度的同时是否会影响微生物数量和群落组成?若微生物发生改变是否会影响土壤养分循环和根系吸收养分的过程?活力低的根系是否会产生某种分泌物加强与有益微生物的互作, 从而增加对养分的吸收能力?这些问题需要进一步探索和研究。

二是弱光胁迫降低玉米产量的问题仍亟待解决。目前仍缺少系统评估耐阴品种的指标和精确的育种策略。未来需要将生化手段(转录组学、蛋白质组学、代谢组学等)和遗传策略(转基因技术、QTL定位等)结合, 找到耐阴性状的主导调控基因, 为培育耐阴型新品种提供理论依据。未来需要开展耐阴品种的筛选和培育、抗逆高产栽培技术的攻关等工作。如何构建植株形态以最大限度地截获光能?如何调控叶片中的氮素分布以提高光合效率?如何最大化地发挥植物生长调节剂的调控作用?从品种和栽培措施两方面入手, 寻求缓解弱光胁迫降低玉米产量的途径, 为实现玉米抗逆、稳产、高效提供科学依据。

[1] Chen X X, Wang L C, Niu Z G, Zhang M, Li C A, Li J R. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China., 2020, 282–283: 107867.

[2] Earley E B, Miller R J, Reichert G L, Hageman R H, Seif R D. Effect of shade on maize production under field conditions., 1966, 6: 1–7.

[3] Struik P C. Effects of short and long shading during different stages of growth on development, productivity and quality of forage maize (L.)., 1983, 31: 101–124.

[4] Kiniry J R, Ritchie J T. Shade-sensitive interval of kernel number of maize., 1985, 77: 711–715.

[5] 赵久然, 陈国平. 不同时期遮光对玉米籽粒生产能力的影响及籽粒败育过程的观察. 中国农业科学, 1990, 23(4): 28–34.

Zhao J R, Chen G P. Effects of shading treatment at different stages of plant development on grain production of corn (L.) and observations of tip kernel abortion., 1990, 23(4): 28–34 (in Chinese with English abstract).

[6] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 遮荫对夏玉米产量及生长发育的影响. 应用生态学报, 2006, 17: 657–662.

Zhang J W, Dong S T, Wang K J, Hu C H, Liu P. Effects of shading on the growth, development and grain yield of summer maize.,2006, 17: 657–662 (in Chinese with English abstract).

[7] Takayuki Y, Osamu U. Structural and photosynthetic re- acclimation to low light in C4maize leaves that developed under high light., 2019, 124: 437–445.

[8] 袁刘正. 玉米自交系耐阴性评价体系及遗传特征研究. 河南农业大学博士学位论文, 河南郑州, 2017.

Yuan L Z. Study on Shading Evaluation System and Genetic Characteristics of Maize Inbred Lines. PhD Dissertation of Henan Agricultural University, Zhengzhou, Henan, China, 2017 (in Chinese with English abstract).

[9] Schulz V S, Munz S, Stolzenburg K, Hartung J, Weisenburger S, Mastel K, Möller K, Claupein W, Graeff-Hönninger S. Biomass and biogas yield of maize (L.) grown under artificial shading., 2018, 8: 178.

[10] Wu H Y, Liu L A, Shi L, Zhang W F, Jiang C D. Photosynthetic acclimation during low-light-induced leaf senescence in post-anthesis maize plants., 2021, 150: 313–326.

[11] Yang Y S, Guo X X, Liu H F, Liu G Z, Liu W M, Ming B, Xie R Z, Wang K R, Hou P, Li S K. The effect of solar radiation changes on the maize yield gap from the perspectives of dry matter accumulation and distribution., 2021, 20: 482–493.

[12] 高佳, 崔海岩, 史建国, 董树亭, 刘鹏, 赵斌, 张吉旺. 花粒期光照对夏玉米光合特性和叶绿体超微结构的影响. 应用生态学报, 2018, 29: 883–890.

Gao J, Cui H Y, Shi J G, Dong S T, Liu P, Zhao B, Zhang J W. Effects of light intensities after anthesis on the photosynthetic characteristics and chloroplast ultrastructure in mesophyll cell of summer maize (L.)., 2018, 29: 883–890 (in Chinese with English abstract).

[13] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 大田遮荫对夏玉米光合特性的影响. 作物学报, 2007, 33: 216–222.

Zhang J W, Dong S T, Wang K J, Hu C H, Liu P. Effects of shading in field on photosynthetic characteristics in summer corn., 2007, 33: 216–222 (in Chinese with English abstract).

[14] 王秀萍. 不同基因型玉米对弱光胁迫的若干生理响应及其分子基础研究. 河南农业大学博士学位论文, 河南郑州, 2012.

Wang X P. Physiological Responses to Low-light Stress and Molecular Basis of Different Maize (L.) Genotypes. PhD Dissertation of Shenyang Agricultural University, Zhengzhou, Henan, China, 2012 (in Chinese with English abstract).

[15] 贾士芳, 李从锋, 董树亭, 张吉旺. 弱光胁迫影响夏玉米光合效率的生理机制初探. 植物生态学报, 2010, 34: 1439–1447.

Jia S F, Li C F, Dong S T, Zhang J W. Physiological mechanism of shading stress on photosynthetic efficiency in summer maize ()., 2010, 34: 1439–1447 (in Chinese with English abstract).

[16] 任作利, 王振华, 张继峯, 杨文杰, 陈潇洁, 贾哲诚. 弱光胁迫对滴灌玉米叶绿素荧光及生长特性的影响. 玉米科学, 2020, 28(4): 96-104.

Ren Z L, Wang Z H, Zhang J F, Yang W J, Chen X J, Jia Z C. Effects of weak light stress on chlorophyll fluorescence and growth characteristics of drip-irrigated maize., 2020, 28(4): 96–104 (in Chinese with English abstract).

[17] 崔海岩, 靳立斌, 李波, 赵斌, 董树亭, 刘鹏, 张吉旺. 大田遮阴对夏玉米光合特性和叶黄素循环的影响. 作物学报, 2013, 39: 478–485.

Cui H Y, Jin L B, Li B, Zhao B, Dong S T, Liu P, Zhang J W. Effects of shading on photosynthetic characteristics and xanthophyll cycle of summer maize in the field., 2013, 39: 478–485 (in Chinese with English abstract).

[18] Chollet R, Vidal J, O’Leary M H. Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants., 1996, 47: 273–298.

[19] 吴新军, 黄良民, 苏强. 海洋浮游植物Rubisco酶的作用及其影响因素研究进展. 生态科学, 2014, 33(1): 166–172.

Wu X J, Huang L M, Su Q. Advances in function and influencing factors of rubisco in marine phytoplankton., 2014, 33(1): 166–172 (in Chinese with English abstract).

[20] Sharwood R E, Sonawane B V, Ghannoum O. Photosynthetic flexibility in maize exposed to salinity and shade., 2014, 65: 3715–3724.

[21] Souza R P, Machado E C, Silva J, Lagôa A, Silveira J. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea () during water stress and recovery., 2004, 51: 45–56.

[22] Stitt M, Zeeman S C. Starch turnover: pathways, regulation and role in growth., 2012, 15: 282–292.

[23] Gao J, Zhao B, Dong S T, Liu P, Ren B Z, Zhang J W. Response of summer maize photosynthate accumulation and distribution to shading stress assessed by using13CO2stable isotope tracer in the field., 2017, 8: 1821.

[24] 吴亚男. 不同玉米品种耐阴性评价及高产群体结构. 沈阳农业大学博士学位论文, 辽宁沈阳, 2014.

Wu Y N. Shade-endurance among Different Maize Varieties and High-yielding Population Structure. PhD Dissertation of Shenyang Agricultural University, Shenyang, Liaoning, China, 2014 (in Chinese with English abstract).

[25] 王群, 赵向阳, 刘东尧, 闫振华, 李鸿萍, 董朋飞, 李潮海. 淹水弱光复合胁迫对夏玉米根形态结构, 生理特性和产量的影响. 中国农业科学, 2020, 52: 3479–3495.

Wang Q, Zhao X Y, Liu D Y, Yan Z H, Li H P, Dong P F, Li C H. Root morphological, physiological traits and yield of maize under waterlogging and low light stress., 2020, 52: 3479–3495 (in Chinese with English abstract).

[26] 高佳, 史建国, 董树亭, 刘鹏, 赵斌, 张吉旺. 花粒期光照强度对夏玉米根系生长和产量的影响. 中国农业科学, 2017, 50: 2104–2113.

Gao J, Shi J G, Dong S T, Liu P, Zhao B, Zhang J W. Effect of different light intensities on root characteristics and grain yield of summer maize (L.)., 2017, 50: 2104–2113 (in Chinese with English abstract).

[27] Schubert S, Mengel K. Effect of light intensity on proton extrusion by roots of intact maize plants., 1986, 67: 614–619.

[28] Tang W, Cheng W X, Zeng H, Zhu B. Light intensity controls rhizosphere respiration rate and rhizosphere priming effect of soybean and sunflower., 2019, 9: 97–105.

[29] 崔海岩, 靳立斌, 李波, 董树亭, 刘鹏, 赵斌, 张吉旺. 遮阴对夏玉米干物质积累及养分吸收的影响. 应用生态学报, 2013, 24: 3099–3105.

Cui H Y, Jin L B, Li B, Dong S T, Liu P, Zhao B, Zhang J W. Effects of shading on dry matter accumulation and nutrient absorption of summer maize., 2013, 24: 3099–3105 (in Chinese with English abstract).

[30] Kravkaz Kuscu I S. Changing of soil properties and urease-catalase enzyme activity depending on plant type and shading., 2019, 191: 178.

[31] 杨东, 段留生, 谢华安, 郑家团, 黄庭旭. 花前光照亏缺对水稻根际土壤微生物生态效应的影响. 科技导报, 2011, 29(7): 26–30.

Yang D, Duan L S, Xie H A, Zheng J T, Huang T X. Ecological effect of pre-flowering light deficit on the rhizosphere soil microbes of rice., 2011, 29(7): 26–30 (in Chinese with English abstract).

[32] Zhou T, Wang L, Sun X, Wang X C, Chen Y L, Rengel Z, Liu W G, Yang W Y. Light intensity influence maize adaptation to low P stress by altering root morphology., 2020, 447: 183–197.

[33] Yu P, He X M, Baer M, Beirinckx S, Tian T, Moya Y A T, Zhang X C, Deichmann M, Frey F P, Bresgen V, Li C J, Razavi B S, Schaaf G, Wirén N V, Su Z, Bucher M, Tsuda K, Goormachtig S, Chen X P, Hochholdinger F. Plant flavones enrich rhizosphere oxalobacteraceae to improve maize performance under nitrogen deprivation., 2021, 7: 481–499.

[34] Yu N N, Ren B Z, Zhao B, Liu P, Zhang J W. Leaf-nitrogen status affects grain yield formation through modification of spike differentiation in maize., 2021, 271: 108238.

[35] Hu J, Ren B Z, Dong S T, Liu P, Zhao B, Zhang J W. Poor development of spike differentiation triggered by lower photosynthesis and carbon partitioning reduces summer maize yield after waterlogging., 2022, 10: 478–489.

[36] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏. 大田遮阴对夏玉米淀粉合成关键酶活性的影响. 作物学报, 2008, 34: 1470–1474.

Zhang J W, Dong S T, Wang K J, Hu C H, Liu P. Effects of shading in field on key enzymes involved in starch synthesis of summer maize., 2008, 34: 1470–1474 (in Chinese with English abstract).

[37] Wang G Q, Zhang J H. Carbohydrate, hormone and enzyme regulations of rice grain filling under post-anthesis soil drying., 2020, 178: 104165.

[38] Yang Y S, Guo X X, Liu G Z, Liu W M, Xue J, Ming B, Xie R Z, Wang K R, Hou P, Li S K. Solar radiation effects on dry matter accumulations and transfer in maize., 2021, 12: 727134.

[39] 贾士芳, 李从锋, 董树亭, 张吉旺. 花后不同时期遮光对玉米粒重及品质影响的细胞学研究. 中国农业科学, 2010, 43: 911–921.

Jia S F, Li C F, Dong S T, Zhang J W. Effects of shading at different stages after anthesis on maize grain weight and quality at cytology level., 2010, 43: 911–921 (in Chinese with English abstract).

[40] 崔海岩, 靳立斌, 李波, 张吉旺, 赵斌, 董树亭, 刘鹏. 遮阴对夏玉米茎秆形态结构和倒伏的影响. 中国农业科学, 2012, 45: 3497–3505.

Cui H Y, Jin L B, Li B, Zhang J W, Zhao B, Dong S T, Liu P. Effects of shading on stalks morphology, structure and lodging of summer maize in field., 2012, 45: 3497–3505 (in Chinese with English abstract).

[41] Wang G Q, Hao S S, Gao B, Chen M X, Liu Y G, Yang J C, Ye N H, Zhang J H. Regulation of gene expression involved in the remobilization of rice straw carbon reserves results from moderate soil drying during grain filling., 2020, 101: 604–618.

[42] Yuan L Z, Tang J H, Liu J Y, Song H, Zhang M B, Li H P, Li C H. Differential miRNA expression in maize ear subjected to shading tolerance., 2016, 38: 80.

[43] Cui H Y, Camberato J J, Jin L B, Zhang J W. Effects of shading on spike differentiation and grain yield formation of summer maize in the field., 2015, 59: 1189–1200.

[44] 周卫霞, 王秀萍, 穆心愿, 李潮海. 弱光胁迫对不同基因型玉米雌雄花发育和授粉结实能力的影响. 作物学报, 2013, 39: 2065–2073.

Zhou W X, Wang X P, Mu X Y, Li C H. Effects of low-light stress on male and female flower development and pollination and fructification ability of different maize (L.) genotypes., 2013, 39: 2065–2073 (in Chinese with English abstract).

[45] Deng F, Zeng Y L, Li Q P, He C Y, Li B, Zhu Y Y, Zhou X, Yang F, Zhong X Y, Wang L, Chen H, Zhou W, Ren W J. Decreased anther dehiscence contributes to a lower fertilization rate of rice subjected to shading stress., 2021, 273: 108291.

[46] 徐云姬, 顾道健, 张博博, 张耗, 王志琴, 杨建昌. 玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系. 作物学报, 2013, 39: 1452–1461.

Xu Y J, Gu D J, Zhang B B, Zhang H, Wang Z Q, Yang J C. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize., 2013, 39: 1452–1461 (in Chinese with English abstract).

[47] 杨卫兵, 王振林, 尹燕枰, 李文阳, 李勇, 陈晓光, 王平, 陈二影, 郭俊祥, 蔡铁, 倪英丽. 外源ABA和GA对小麦籽粒内源激素含量及其灌浆进程的影响. 中国农业科学, 2011, 44: 2673–2682.

Yang W B, Wang Z L, Yin Y P, Li W Y, Li Y, Chen X G, Wang P, Chen E Y, Guo J X, Cai T, Ni Y L. Effects of spraying exogenous ABA or GA on the endogenous hormones concentration and filling of wheat grains., 2011, 44: 2673–2682 (in Chinese with English abstract).

[48] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling., 2001, 127: 315–323.

[49] Yang, J C, Zhang J H, Wang Z Q, Xu G W, Zhu Q S. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling., 2004, 135: 1621–1629.

[50] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响. 作物学报, 2022, 48: 2366−2376.

Zhang Z B, Qu X Y, Yu N N, Ren B Z, Liu P, Zhao B, Zhang J W. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize., 2022, 48: 2366−2376 (in Chinese with English abstract).

[51] 孙庆泉, 吴元奇, 胡昌浩, 董树亭, 荣廷昭, 张颖. 不同产量潜力玉米籽粒胚乳细胞增殖与籽粒充实期的生理活性. 作物学报, 2005, 31: 612–618.

Sun Q Q, Wu Y Q, Hu C H, Dong S T, Rong T Z, Zang Y. Physiological activities and multiplication of endosperm cell at filling stage of kernels with different yield potential in maize., 2005, 31: 612–618 (in Chinese with English abstract).

[52] Hiyane R, Shinichi H, Tang A C, Boyer J S. Sucrose feeding reverses shade-induced kernel losses in maize., 2010, 106: 395–403.

[53] 付景, 徐云姬, 陈露, 袁莉民, 王志琴, 杨建昌. 超级稻花后强、弱势粒淀粉合成相关酶活性和激素含量变化及其与籽粒灌浆的关系. 中国水稻科学, 2012, 26: 302–310.

Fu J, Xu Y J, Chen L, Yuan L M, Wang Z Q, Yang J C. Post-anthesis changes in activities of enzymes related to starch synthesis and contents of hormones in superior and inferior spikelets and their relation with grain filling of super rice., 2012, 26: 302–310 (in Chinese with English abstract).

[54] Gao J, Shi J G, Dong S T, Liu P, Zhao B, Zhang J W. Grain development and endogenous hormones in summer maize (L.) submitted to different light conditions., 2018, 62: 2131–2138.

[55] Zhou J L, Tian L, Wang S X, Li H P, Zhao Y L, Zhang M B, Wang X L, An P P, Li C H. Ovary abortion induced by combined waterlogging and shading stress at the flowering stage involves amino acids and flavonoid metabolism in maize., 2021, 12: 778717.

[56] 史建国, 崔海岩, 赵斌, 董树亭, 刘鹏, 张吉旺. 花粒期光照对夏玉米产量和籽粒灌浆特性的影响. 中国农业科学, 2013, 46: 4427–4434.

Shi J G, Cui H Y, Zhao B, Dong S T, Liu P, Zhang J W. Effect of light on yield and characteristics of grain-filling of summer maize from flowering to maturity., 2013, 46: 4427–4434 (in Chinese with English abstract).

[57] 岳杨, 郑永照, 王提江, 倪玉春, 董本春, 高玮, 康恒, 孙世伟.玉米花丝生长发育规律及花丝活力的相关研究. 安徽农学通报, 2013, 19(18): 16.

Yue Y, Zheng Y Z, Wang T J, Ni Y C, Dong B C, Gao W, Kang H, Sun S W. Study on the growth and development of maize filament and its vigor., 2013, 19(18): 16 (in Chinese without English abstract).

[58] Yang J C, Zhang J H, Wang Z Q, Zhu Q S. Hormones in the grains in relation to sink strength and post anthesis development of spikelets in rice., 2003, 41: 185–195.

[59] Fu J, Xu Y J, Lu C, Yuan L M, Wang Z Q, Yang J C. Changes in enzyme activities involved in starch synthesis and hormone concentrations in superior and inferior spikelets and their association with grain filling of super rice., 2013, 20: 120–128.

[60] 杜成凤, 李潮海, 刘天学, 赵亚丽. 遮荫对两个基因型玉米叶片解剖结构及光合特性的影响. 生态学报, 2011, 31: 6633–6640.

Du C F, Li C H, Liu T X, Zhao Y L. Response of anatomical structure and photosynthetic characteristics to low light stress in leaves of different maize genotypes., 2011, 31: 6633–6640 (in Chinese with English abstract).

[61] 李潮海, 栾丽敏, 尹飞, 王群, 赵亚丽. 弱光胁迫对不同基因型玉米生长发育和产量的影响. 生态学报, 2005, 25: 824–830.

Li C H, Luan L M, Yin F, Wang Q, Zhao Y L. Effects of light stress at different stages on the growth and yield of different maize genotypes (L)., 2005, 25: 824–830 (in Chinese with English abstract).

[62] Tanaka W, Maddonni G Á. Maize kernel oil and episodes of shading during the grain-filling period., 2009, 49: 2187–2197.

[63] Shen S, Li B B, Deng T, Xiao Z D, Chen X M, Hu H, Zhang B C, Wu G, Li F, Zhao X, Liang X G, Mi G H, Zhou S L. The equilibrium between sugars and ethylene is involved in shading- and drought-induced kernel abortion in maize., 2020, 91: 101–111.

[64] Guo X X, Yang Y S, Liu H F, Liu G Z, Liu W M, Wang Y H, Zhao R L, Ming B, Xie R Z, Wang K R, Hou P, Xiao C H, Li S K. Effects of solar radiation on root and shoot growth of maize and the quantitative relationship between them., 2020, 61: 1414–1425.

[65] Su Z E, Liu Z J, Bai F, Zhang Z T, Sun S, Huang Q W, Liu T, Liu X Q, Yang X G. Cultivar selection can increase yield potential and resource use efficiency of spring maize to adapt to climate change in northeast China., 2021, 20: 371–382.

[66] 黄鑫慧, 高佳, 任佰朝, 赵斌, 刘鹏, 张吉旺. 植酶Q9对大田遮阴夏玉米产量形成的影响. 中国农业科学, 2019, 52: 3309–3322.

Huang X H, Gao J, Ren B Z, Zhao B, Liu P, Zhang J W. Effects of phytase Q9 on yield formation of summer maize shading in the field., 2019, 52: 3309–3322 (in Chinese with English abstract).

[67] 黄鑫慧, 任佰朝, 赵斌, 刘鹏, 张吉旺. 植酶Q9对大田遮阴夏玉米产量和衰老特性的调控作用. 应用生态学报, 2020, 31: 3433–3444.

Huang X H, Ren B Z, Zhao B, Liu P, Zhang J W. Effects of Phytase Q9 on the yield and senescence characteristics of summer maize shaded in the field., 2020, 31: 3433–3444 (in Chinese with English abstract).

[68] 陈均治, 王懿茜, 解君, 李香云, 付筱, 聂纪鲁, 朱伟, 刘铁宁,韩清芳, 贾志宽. 密植条件下去叶处理对夏玉米籽粒灌浆及产量的影响. 西北农业学报, 2018, 27(9): 66–74.

Chen J Z, Wang Y Q, Xie J, Li X Y, Fu X, Nie J L, Zhu W, Liu T N, Han Q F, Jia Z K. Effects of leaf removal on grain filling and yield of summer maize under high density., 2018, 27(9): 66–74 (in Chinese with English abstract).

[69] Yu N N, Ren B Z, Zhao B, Liu P, Zhang J W. Optimized agronomic management practices narrow the yield gap of summer maize through regulating canopy light interception and nitrogen distribution., 2022, 137: 126520.

[70] Shi Z, Chang T G, Chen G Y, Song Q F, Wang Y J, Zhou Z W, Wang M Y, Qu M N, Wang B S, Zhu X G. Dissection of mechanisms for high yield in two elite rice cultivars., 2019, 241: 107563.

[71] 匡廷云, 赵明, 卢从明, 白克智, 焦德茂, 张荣铣, 李良璧. 提高光能利用效率力争作物产量的突破. 见: 21世纪作物科技与生产发展学术讨论会论文集, 2002. pp 29–35.

Kuang T Y, Zhao M, Lu C M, Bai K Z, Jiao D M, Zhang R X, Li L B. Improve the utilization efficiency of light energy and strive for the breakthrough of crop yield. In: Symposium on Crop Technology and Production Development in the 21st Century, 2002. pp 29–35 (in Chinese).

[72] Suetsugu N, Wada M. Chloroplast photorelocation movement mediated by phototropin family proteins in green plants., 2007, 388: 927–935

[73] Wang Y, Lu Y Y, Chang Z Y, Wang S H, Ding Y F, Ding C Q. Transcriptomic analysis of field-grown rice (L.) reveals responses to shade stress in reproductive stage., 2018, 84: 583–592.

[74] 任禛, 陈泽斌, 胡昳, 尹敏, 夏体渊, 尹利方, 颜家亮, 王定康.弱光胁迫下接种对玉米生长生理指标的影响. 玉米科学, 2016, 24(2): 160–165.

Ren Z, Chen Z B, Hu D, Yin M, Xia T Y, Yin L F, Yan J L, Wang D K. Effect ofinoculation on growth and physiological indexes of maize under low-light stress., 2016, 24(2): 160–165 (in Chinese with English abstract).

[75] Evans L T. Crop evolution, adaptation and yield., 1998, 34: 56–56.

[76] 宋航. 光、氮及其互作对玉米物质生产和碳氮代谢的影响. 河南农业大学硕士学位论文, 河南郑州, 2016.

Song H. Effect of Light, Nitrogen and Their Interaction on Matter Production, Carbon and Nitrogen Metabolism of Maize. MS Thesis of Henan Agricultural University, Zhengzhou, Henan, China, 2016 (in Chinese with English abstract).

[77] Zheng N B, Du W G, Ge Q Y, Zhang G R, Li W H, Man W Q, Peng D C, Bai K Z, Kuang T Y. Progress in the breeding of soybean for high photosynthetic efficiency., 2002, 44: 253–258.

[78] Shi Q B, Kong F Y, Zhang H S, Jiang Y E, Heng S Q, Liang R, Ma L, Liu J S, Lu X D, Li P H, Li G. Molecular mechanisms governing shade responses in maize., 2019, 516: 112–119.

[79] 于涛. 玉米粒位效应的差异蛋白质组学机制及其对6-BA调控的响应. 山东农业大学博士学位论文, 山东泰安, 2017.

Yu T. Differential Proteomic Mechanisms of Grain Position Effect in Maize and Its Response to 6-Benzylaminopurine (6-BA) Regulation. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2017 (in Chinese with English abstract).

[80] 乔江方, 刘京宝, 黄璐, 夏来坤, 朱卫红, 李川. 遮阴条件下不同生长调节剂对玉米的增产效应. 河南农业科学, 2013, 42(12): 24–27.

Qiao J F, Liu J B, Huang L, Xia L K, Zhu W H, Li C. Effect of different growth regulators on grain yield of maize in shading condition at flowering stage., 2013, 42(12): 24–27 (in Chinese with English abstract).

Physiological mechanism and regulation effect of low light on maize yield formation

SUN Zhi-Chao and ZHANG Ji-Wang*

Agronomy College, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China

As for global climate change, insufficient light during the growth periods has become one of the main factors restricting maize yield, increasing the risk of global food production and nutritional security. In this study, based on the previous experiments, we explored the physiological mechanism of low light on maize yield formation from the aspects of photosynthetic performance, nutrient absorption characteristics, grain formation, and filling characteristics. Under low light stress, the light harvesting ability of leaves was reduced, the stromal and grana thylakoids disintegrated, the activities of related enzymes were reduced, the photosystem was damaged, and the carbon assimilation ability was reduced, which further inhibited root development, significantly affected root morphology and function, and was not conducive to nutrient absorption and metabolism. Due to the insufficient nutrition supply, the development of tassel and ear was blocked, the morphological function of pollen and filaments was affected, resulting in low flower fertilization rate and decreased grain number per ear. Low light also reduced the number of endosperm cells— “sink” capacity, the structure and function of the endosperm transfer cells were affected, the endogenous hormonal balance was broken, sucrose, starch metabolism related enzyme activity decreased, internodes vascular bundle number and area reduced, transport and transformation ability were limited, eventualy led to the poor state of starch and the decreased grain weight significantly. Therefore, to alleviate the influence of low light stress on maize yield formation, it is urgent to establish indexes for systematic evaluation of shade tolerance varieties, accelerate the cultivation of new shade-tolerant varieties with high light efficiency by modern technology, and adopt cultivation measures such as increasing nitrogen fertilizer application, removing top leaves, spraying growth regulator and foliar fertilizer to improve maize yield. In the future, more attention should focus on root-shoot coordination and deeply explore the mechanism of low light stress, so as to provide the theoretical basis for the establishment of key techniques of maize resistance to yield increase.

low-light stress; artificial shading; maize; yield; shade tolerance; physiological mechanism; regulation effect

10.3724/SP.J.1006.2023.13064

本研究由财政部和农业农村部国家现代农业产业技术体系建设专项(CARS-02-21), 山东省重点研发计划项目(2021LZGC014-2)和山东省中央引导地方科技发展资金项目(YDZX20203700002548)资助。

This study was supported by the China Agriculture Research System of MOF and MARA (CARS-02-21), the Shandong Province Key Research and Development Project (2021LZGC014-2), and the Shandong Central Guiding the Local Science and Technology Development (YDZX20203700002548).

通信作者(Corresponding author):张吉旺, E-mail: jwzhang@sdau.edu.cn

E-mail: 3148755134@qq.com

2021-11-15;

2022-08-01;

2022-08-11.

URL: https://kns.cnki.net/kcms/detail/11.1809.S.20220809.1536.005.html

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

猜你喜欢

弱光蔗糖籽粒
基于AI建模的宽带弱光问题精准定界方法
籽粒苋的饲用价值和高产栽培技术
低温弱光对茄子幼苗抗逆性指标的影响
“0蔗糖”就是无糖?
蔗糖中红外光谱初步研究
红糖膏中蔗糖结晶抑制方法及展望
玉米机械脱粒籽粒含水量与破碎率的相关研究
掺HRA 对蔗糖超缓凝水泥基材料性能的影响
机收玉米杂交组合的品种特性研究
玉米籽粒机械直收应注意的问题