APP下载

施氮量对巨胚水稻产量、品质及γ-氨基丁酸含量的影响

2022-12-13胡明明彭立功李从美陈光毅况湖东何星枚张秋秋梁朝德

植物营养与肥料学报 2022年11期
关键词:精米食味糙米

胡明明,兰 艳,彭立功,李从美,陈光毅,况湖东,何星枚,杨 洪,张秋秋,梁朝德,李 天

(四川农业大学农学院/作物生理生态及栽培四川省重点实验室,四川成都 611130)

水稻是当今世界最重要的粮食作物之一,全球有超过一半以上的人口以稻米为主食[1]。近年来,随着经济的快速发展,人民生活水平日益改善,稻米的营养价值越来越受到重视[2]。巨胚水稻是具有高营养、多功能的一种特种稻,其胚大小是普通稻米胚的2~3倍,有的甚至可以达到5倍以上[3–4]。米胚内含有丰富的蛋白质、脂肪、维生素等天然营养元素,尤其富含对人体具有多种调节功能的γ-氨基丁酸(GABA)[5–6],具有降血压、降血脂、活化肝肾、预防肥胖等功能,素有“长寿米”、“高营养功能性稻米”的美誉[7–9]。而氮素是水稻生产中较大的限制因素之一,在水稻的生长发育、产量提高以及品质改善等方面具有重要作用[10]。长期以来,施用氮肥是保证水稻高产优质的重要措施,但施氮过多不仅会降低其产量品质,更易造成环境污染[11]。因此,适宜的施氮量是确保巨胚水稻优质栽培的关键因素。

目前,国内关于巨胚水稻的研究并不多,且主要涉及种质资源创新[12]、籽粒灌浆特性[13]、营养价值分析[14]、胚发育的解剖学观察[15]等方面,国内已先后培育出“巨胚香糯 1547”[16]、“巨胚稻 TgeB”[17]、“上师大5号”[18]等多个巨胚稻品种,巨胚糙米内的粗蛋白、粗脂肪、矿物质、维生素、氨基酸含量等均有不同程度的提高[19],尤其是 γ-氨基丁酸 (GABA) 含量明显增加,有的甚至较普通稻高2~6倍[20]。而国内对于巨胚水稻的配套栽培技术研究甚少,尤其是不同施氮量对GABA含量的影响鲜有报道。巨胚水稻在我国还是零星种植,一方面是由于缺乏高产优质适应性广的品种,另一方面是没有成熟的栽培技术,难以得到大面积推广[21]。因此,本试验选用笔者课题组从日本引进的巨胚稻,经多年种植并筛选出适合四川地区生态环境的品种J20,并以日本常规粳稻越光作对照,研究施氮量对巨胚水稻产量、品质及GABA含量的影响,以期为巨胚水稻的推广应用奠定理论和技术基础。

1 材料与方法

1.1 试验材料

供试水稻品种为巨胚水稻J20 (常规粳稻)和越光(常规粳稻)。巨胚水稻为日本九州大学和农业生物资源研究院先后利用化学诱变的方法,从越光中选育出巨大胚的突变体(J20胚达越光胚的2倍);越光为1956年日本育成的中粳稻品种,稻米品质优、口感好。两品种经本课题组引进,在四川多年种植,产量稳定,全生育期为135~138天,J20株高1.31 m,穗长 20.77 cm,剑叶叶面积 59.32 cm2,越光株高 1.19 m,穗长 20.20 cm,剑叶叶面积 30.90 cm2。试验于2020—2021年在四川农业大学崇州市现代化农业科研园区进行,前茬为油菜,耕层土壤(0—20 cm)质地为砂壤土。土壤基本理化性状见表1。巨胚J20和越光糙米粒型对比见图1。

图1 供试巨胚水稻品种J20与越光粒型的比较Fig.1 Comparison between the test giant embryo rice cultivar J20 and Koshihikari grains

表1 土壤基本理化性状Table 1 Basic soil physical and chemical properties

1.2 试验设计

试验采用随机区组设计,设置5个氮水平,分别为 N 0、90、135、180、225 kg/hm2,对应记为N0、N90、N135、N180、N225处理,以 N0为对照。小区面积 5 m×4 m=20 m2,重复 3 次,共计 30 个小区,行穴距30 cm×25 cm,每穴栽2苗。2年均采用水育秧,2020年于4月12日播种,5月16日进行人工移栽,8月25日收获;2021年于4月16日播种,5月20日进行人工移栽,8月29日收获。氮肥为尿素 (N≥46%),按基肥∶蘖肥=6∶4施入,钾肥为氯化钾 (K2O≥60%,180 kg/hm2),磷肥为过磷酸钙(P2O5≥12%,90 kg/hm2),基肥氮和全部磷钾肥在移栽前1天施入,其余田间管理措施保持一致。

1.3 测定项目及方法

1.3.1 产量测定 成熟期每小区选取30穴调查有效穗数,并按平均有效穗数从每小区选取5穴进行考种,调查每穗总粒数、着粒数、千粒重、结实率、理论产量等指标,然后分区收获,晒干,待稻谷含水量为14%时实测产量。

1.3.2 品质测定 各处理稻谷晒干,存放3个月后进行稻米品质测定。稻米的糙米率、精米率、整精米率、垩白粒率、垩白度等均按照中华人民共和国国家标准《GB/T 17891—2017》测定。

稻米淀粉黏滞性使用澳大利亚Newport Scientific仪器公司生产的RVA-4型RVA仪进行快速测定,并用 TCW ( Thermal cycle for Windows) 配套软件进行分析。米粉过0.15 mm 筛,每一品种称取3.00 g精米加25.00 mL蒸馏水。测定时间12.5 min,在此过程中罐内温度先在50℃保持1 min,然后上升到95℃ 保持 2.5 min,最后降至 50℃ 保持 1.4 min, 温度变化速率为11.84℃/min。搅拌器的转速在最初10 s内为960 r/min,此后保持在160 r/min。黏滞值用RVU (RVA 黏度单位) 表示。

稻米食味采用日本佐竹SATAKE STA1B米饭食味计测定:称取30.00 g精米于钢罐中,用清水清洗稻米3次,每次30 s,按照米∶水=1∶1.3的比例加入蒸馏水。覆上滤纸,用胶皮圈密封,从洗涤开始计时浸泡30 min,连同滤纸一起置于电饭煲中加热蒸煮30 min,切断电源,保温10 min。取出钢罐,将其中米饭轻轻搅拌呈翻起状态,拌后盖上滤纸,放入配套风冷装置(米饭食味仪配套)冷却20 min,风冷后取滤纸,改换配套钢盖,密封自然冷却90 min。后称取 (8.00 ± 0.01) g 米饭于带铁环的压饼中,制成成型的米饼,在食味计上选择测定稻米类型,直接读取外观、口感、硬度、粘度、平衡度、弹性和食味值评分。

蛋白质含量测定:称取1.00 g糙米粉,分别注入 250 mL 消化管中,注入 12 mL 浓硫酸及 7 g K2SO4和 0.8 g CuSO4·5H2O 的混合物,420℃ 下消化 1 h后,采用Kjeltec 2300全自动凯氏定氮仪(瑞典FOSSTECATOR公司生产)测定米粉含氮量,再乘以5.95转换成粗蛋白量。

1.3.3 γ-氨基丁酸 (GABA)含量测定 分别取适量糙米样品粉碎过筛,再准确称取0.4 g米粉于15 mL 离心管中,加入 8 mL 0.1 mol/L 的盐酸,手动摇匀、浸提过夜;然后摇床震荡60 min;取上清液2 mL 离心 (4℃ 下 14500 r/min 离心 15 min);再取上清液500 μL,加入等体积10%的磺基水杨酸,充分混匀,4℃静置15 min,能看到沉淀生成;用1 mL注射器取上清液500 μL,用0.45 μm滤膜过滤,于氨基酸分析仪上检测。

1.3.4 胚重量测定 各小区分别取100粒糙米,烘干至恒重(W1),再用蒸馏水浸泡2天,取出后用滤纸吸干表面水分,然后用镊子小心剥去胚,将去胚糙米烘干至恒重(W2),根据公式(W=W1−W2)计算胚重量。

1.3.5 水解氨基酸含量测定 各处理分别取适量糙米样品粉碎过筛,再准确称取200 mg米粉置于顶空进样瓶中,加入10 mL 6 mol/L的盐酸后封口,置于恒温干燥箱中110℃水解24 h;将水解好的样品取出冷却至室温,用漏斗和滤纸进行过滤,后定容至50 mL容量瓶中;取1 mL定容后的样品溶液置于水浴锅上70℃进行脱酸,至底部留有少许痕渍为止;脱酸完成后,用1 mL的样品稀释液复溶,用0.45 μm滤膜过滤,氨基酸分析仪上检测。

1.4 数据处理

所有数据利用 SPSS 25.0 (SPSS Institute Inc,Chicago, USA)、Excel (2010)进行分析,并利用最小显著差数(LSD)在P=0.05水平上进行差异显著性比较。

2 结果与分析

2.1 施氮量对水稻产量及其构成因素的影响

由表2可知,J20高产的适宜施氮量与越光一致,各水稻品种两年的产量均随施氮量增加呈先上升后下降的趋势,在N135处理下最高,2020年N135处理下两品种分别较N0处理增产44.37% (J20)和41.00% (越光),2021 年分别增产 37.32% (J20)和28.73% (越光),N135、N180、N225处理间差异不显著,但三者均显著高于N0处理。两年试验均以J20产量的变异系数最大,但相同施氮量下J20的产量均低于越光。根据J20、越光两年的平均产量与施氮量,建立效应方程y=−0.1075x2+29.287x+5002.5 (R2=0.9979)、y=−0.0929x2+25.396x+5481.9 (R2=0.9628),两品种产量均与施氮量呈开口向下的抛物线关系(图2),计算得出J20最适宜施氮量为136.22 kg/hm2,理论最高产量为6997.22 kg/hm2,越光最适宜施氮量为 136.68 kg/hm2,理论最高产量为 7217.52 kg/hm2。

图2 产量与施氮量的关系Fig.2 The relationship between yield and N application rate

表2 施氮量对水稻产量及其构成因素的影响Table 2 Effects of N application rate on rice yield and yield components

从产量构成因素来看,各品种两年的有效穗数均随施氮量增加呈先增后降的趋势,在N135处理下最高,N135、N180、N225处理与N0处理差异显著;每穗颖花数随施氮量增加而增加,N225处理最高,与N0处理达到显著差异水平;结实率与千粒重呈相同的变化趋势,多随施氮量增加而下降,N0处理与其余处理多差异显著。相同施氮量下越光的有效穗数、结实率和千粒重均高于J20,但每穗颖花数低于J20。方差分析结果表明,品种与施氮量对水稻产量、产量构成因素影响达显著或极显著水平,年份、年份和品种交互作用、年份和施氮量交互作用、品种和施氮量交互作用,以及年份×品种×施氮量三者间的交互作用,对每穗颖花数、结实率和千粒重的影响达极显著水平。

2.2 施氮量对水稻加工品质及外观品质的影响

由表3可知,两个水稻品种的加工品质对施氮量的响应表现一致。糙米率、精米率和整精米率随着施氮量的增加呈先上升后下降的趋势,在N135处理下达到最大,再增施氮肥水稻的加工品质有变劣的趋势。两年试验加工品质均以整精米率的变异系数最大,且2021年J20整精米率的变异系数明显大于越光。相同施氮量下越光的糙米率、精米率均高于J20,但整精米率略低于J20。根据J20、越光两年的平均糙米率与施氮量,建立效应方程y=−0.0002x2+0.0452x+75.267 (R2=0.9823)、y=−0.0002x2+0.0529x+77.316 (R2=0.9879),计算得出J20和越光糙米率达到最大的适宜施氮量分别为113和132.25 kg/hm2。根据J20、越光两年的平均整精米率与施氮量,建立效应方程y=−0.0003x2+0.0789x+54.445 (R2=0.956)、y=−0.0002x2+0.0501x+53.521 (R2=0.9754),计算得出J20和越光整精米率达到最大的适宜施氮量分别为131.50 和 125.25 kg/hm2(图3)。

表3 施氮量对水稻加工品质及外观品质的影响Table 3 Effects of N application rate on processing and appearance quality of rice

从外观品质来看,除2020年越光的垩白粒率和垩白度在N0处理最低,与N135处理差异不显著外,各品种的垩白粒率和垩白度多随施氮量增加先降后增,在N135处理下最低,与N0处理达显著差异水平。两年试验均以越光垩白粒率、垩白度的变异系数最大,但相同施氮量下J20的垩白粒率、垩白度均高于越光。根据两品种的垩白粒率与施氮量,建立效应方程y=0.0002x2−0.0571x+78.206 (R2=0.9238)、y=0.0005x2−0.1409x+27.052 (R2=0.9977),计算得出J20和越光垩白粒率达到最低的适宜施氮量分别为142.75 和 140.90 kg/hm2(图3)。方差分析结果表明,年份、品种、施氮量、年份和品种交互作用、年份和施氮量交互作用(精米率除外)对各指标的影响达极显著水平,品种和施氮量交互作用以及年份×品种×施氮量三者交互作用对整精米率、垩白粒率、垩白度影响达极显著水平。

图3 稻米加工品质、外观品质与施氮量的关系Fig.3 The relationship between rice processing quality, appearance quality, and N application rate

2.3 施氮量对稻米淀粉黏滞性及食味值的影响

如表4所示,随着施氮量增加,两个品种的峰值黏度、热浆黏度和最终黏度呈下降趋势,其中J20的峰值黏度在各处理间差异显著,越光的峰值黏度在N180、N225处理间差异不显著,其余各处理间多差异显著,各施氮处理的平均峰值黏度分别较N0处理下降 7.44% (J20)和 9.74% (越光)。随施氮量增加,两品种的崩解值和消减值无明显变化规律,均在N135处理下表现最好,此时崩解值最大,消减值最小,但与N0处理差异不显著。糊化温度随施氮量增加整体呈上升趋势,各处理间差异未达到显著水平。两品种均以消减值的变异系数最大,且J20崩解值的变异系数明显大于越光。相同施氮量下越光的峰值黏度、热浆黏度、崩解值和最终黏度均高于J20,但消减值均低于J20。方差分析结果表明,品种对各指标(糊化温度除外)的影响达极显著水平,施氮量对峰值黏度、热浆黏度、最终黏度、消减值影响达极显著水平,品种与施氮量二者互作对峰值黏度、热浆黏度、最终黏度的影响达极显著水平。

表4 施氮量对稻米淀粉黏滞性的影响(RVU)Table 4 Effects of N application rate on starch viscosity of rice

水稻食味品质的优劣一般通过外观、口感、硬度、粘度、平衡度和弹性进行评判,综合这6个指标最终得出食味值,食味值得分越高,则食味品质越好。由表5可知,随着施氮量增加,J20的外观、口感和食味值均呈下降趋势,其中除N0与N90处理差异不显著外,其余处理间差异显著,各施氮处理的平均食味值较N0处理下降10.73%,硬度、粘度和平衡度随施氮量增加整体呈增加趋势,弹性则相反,整体呈下降趋势。随着施氮量增加,越光的外观、口感和食味值由高到低依次为N135>N0>N90>N180>N225,但N135与N0处理观感品质差异不显著,硬度、粘度、平衡度和弹性均随施氮量增加整体呈增加趋势。两品种均以粘度的变异系数最大,且J20食味值的变异系数大于越光。相同施氮量下越光的外观、口感和食味值均高于J20。方差分析结果表明,品种对外观、口感、食味值影响达极显著水平,施氮量对外观、口感、硬度、食味值影响达极显著水平,品种与施氮量二者互作对外观、口感、弹性、食味值影响达显著或极显著水平。

表5 施氮量对稻米食味值的影响Table 5 Effects of N application rate on rice taste value

2.4 施氮量对稻米蛋白质含量、γ-氨基丁酸(GABA)含量及胚重量的影响

由表6可知,随着施氮量增加,两个品种的蛋白质含量呈增加趋势,N225处理最大,分别较N0处理增加 10.29% (J20)和 8.62% (越光),其中 J20 的N0、N90处理与N225处理差异显著,越光各处理间无显著差异。随着施氮量增加,两个品种的GABA含量和胚重量先增后降,在N135处理达到最大,再增施氮肥两者均下降,但各处理间无显著差异。相同施氮量下J20的蛋白质含量、GABA含量和胚重量均高于越光,其中J20各处理的平均GABA含量较越光显著增加48.92%,J20胚重达越光胚的2倍。方差分析结果表明,品种对糙米中GABA含量、胚重量影响达极显著水平,施氮量对蛋白质含量影响达显著水平。根据J20、越光GABA含量与施氮量,建立效应方程y=−0.0002x2+0.0559x+18.474(R2=0.9953)、y=−0.0002x2+0.0566x+11.317 (R2=0.8632),计算得出J20最适宜施氮量为139.75 kg/hm2,最高GABA含量为22.38 mg/100g,越光最适宜施氮量为141.50 kg/hm2,最高 GABA 含量为 15.32 mg/100g(图4)。

图4 糙米GABA含量与施氮量的关系Fig.4 The relationship between GABA content of brown rice and N application rate

表6 施氮量对稻米蛋白质含量、γ-氨基丁酸含量及胚重量的影响Table 6 Effects of N application rate on protein content, GABA content, and embryo weight of rice

由表7可知,随着施氮量增加,两个品种的氨基酸含量整体呈增加趋势,N225处理下的氨基酸总量、必需氨基酸含量、非必需氨基酸含量分别较N0处理增加29.25%、23.49%、31.68% (J20)和19.34%、14.88%、21.33% (越光)。两个品种中各种氨基酸的平均含量以谷氨酸最高,其次为天冬氨酸、精氨酸、亮氨酸、丙氨酸、丝氨酸,甲硫氨酸最低。相同施氮量下J20的氨基酸总量均高于越光。

表7 施氮量对糙米中水解氨基酸含量的影响(mg/100 mg)Table 7 Effects of N application rate on hydrolyzed amino acid content in brown rice

J20产量与品质的相关性分析(表8)表明,施氮量与每穗颖花数、蛋白质含量呈显著或极显著正相关,而与结实率、千粒重呈极显著或显著负相关;产量与有效穗数、糙米率、精米率、整精米率呈极显著或显著正相关,而与垩白粒率、垩白度呈极显著负相关;蛋白质含量与每穗颖花数呈极显著正相关,而与结实率、千粒重呈显著或极显著负相关;GABA含量与精米率呈显著正相关。

表8 水稻产量与品质的相关性分析Table 8 Correlation analysis between rice yield and quality traits

3 讨论

3.1 施氮量对巨胚水稻产量及产量构成因素的影响

施氮量是决定水稻产量的关键性因素,只有在适宜的施氮量范围内,才能保障水稻高产、稳产。前人研究发现,在一定的施氮量范围 (0~390 kg/hm2)内,水稻产量随施氮量增加而增加,但过量施氮会延缓植株成熟,导致非结构性碳水化合物在茎秆中积累,从而造成水稻减产[22]。成臣等[23]研究表明,随着施氮量增加,水稻的氮肥利用率先增后降,产量呈抛物线趋势,在施氮量为225 kg/hm2时达到最高产量,有效穗数和每穗粒数的提高是产量增加的主要原因,这一点也在本试验中得到验证。徐春梅等[24]研究指出,低密度种植时,在施氮量为165 kg/hm2

时产量最高,结实率随施氮量增加整体呈下降趋势,千粒重在各处理间差异不显著,产量增加主要是由于高施氮处理提高了有效穗数。综上,由于品种及地域差异,不同水稻品种获得最高产量的施氮量也不尽相同。本研究结果表明,随着施氮量增加,两个品种的产量呈先上升后下降的趋势,以施氮量为135 kg/hm2时产量最高,再增施氮肥,容易造成群体量过大从而引起倒伏减产,且施氮量过多易增加无效分蘖,导致水稻秆细穗小,最终产量下降,同时根据两品种产量与施氮量建立效应方程计算得出,J20最高产量的施氮量为136.22 kg/hm2,越光最高产量的施氮量为136.68 kg/hm2,与实际值较吻合。前人研究发现,随着施氮量增加,水稻增产的原因有的是由于有效穗数和穗粒数同步提高[25],有的只是由于穗粒数增加,而有效穗数先增后减[26],本研究结果与后者较为一致,这可能是由于四川盆地的气候特点是弱光寡照、高湿度,从而限制了单位面积水稻的容穗量[27],加之氮肥用量过高易导致群体生长过密,加剧无效分蘖的发生和生长,降低成穗率[26]。值得注意的是,在本研究中,相同施氮量下越光的千粒重、产量均高于巨胚稻J20,这可能是由于巨胚稻J20的胚所占的比例增加,籽粒没有充足的空间积累淀粉,胚乳发育不良而导致千粒重明显下降[19],也可能是由于胚增大所消耗的能量来源于水稻中的淀粉,淀粉的大量减少导致千粒重减少、产量下降[28]。

3.2 施氮量对巨胚水稻加工品质、外观品质及蒸煮食味品质的影响

关于施氮量对水稻加工品质及外观品质的影响,不同的研究人员有着不同的结论。张军等[29]研究发现,施氮量与稻米的糙米率、精米率和整精米率呈正相关,而与垩白粒率和垩白度呈负相关,说明增加施氮量有利于加工品质及外观品质的提升。兰艳等[30]认为,适宜的施氮量可提高根系活力,促进物质运转,增加籽粒质量和充实度,从而提高加工品质,但施氮量过高也会导致籽粒灌浆受阻,不饱满度增加,最终加工品质下降。殷春渊等[31]研究表明,施氮量对稻米的糙米率、精米率和整精米率影响较小,低氮处理下加工品质较优,而垩白粒率和垩白度随施氮量增加先降后增,说明适宜的施氮量有利于外观品质改善。本研究表明,在一定范围内,两个品种的糙米率、精米率和整精米率随施氮量增加而增加,垩白粒率和垩白度随施氮量增加而降低,但当氮肥用量超过135 kg/hm2时,加工品质及外观品质变劣,同时根据两品种的糙米率、整精米率、垩白粒率与施氮量建立效应方程计算得出,糙米率达到最大的适宜施氮量分别为 113 kg/hm2(J20)、132.25 kg/hm2(越光),整精米率达到最大的适宜施氮量分别为 131.50 kg/hm2(J20)、125.25 kg/hm2(越光),垩白粒率达到最低的适宜施氮量分别为142.75 kg/hm2(J20)、140.90 kg/hm2(越光)。糙米中蛋白质含量增加会导致淀粉分散性降低,或是稻米硬度增加,抗碾磨能力得到增强[32],这可能是J20的整精米率略高于越光的原因,相同施氮量下,J20蛋白质含量高于越光。相同施氮量下J20的垩白粒率、垩白度均高于越光,推测是由于胚的异常发育,导致过度消耗进入籽粒的碳源,进而影响胚乳淀粉合成所致,或是垩白部位距胚较远,碳源运输效率降低,导致淀粉填充不足所致[33],也可能是由于J20叶面积过大,叶片重叠加剧,植株光合作用减弱,制造的有机物少所致[30]。

淀粉RVA谱特性与稻米的食味性有着密切关系,食味品质较好的稻米一般表现为峰值黏度高、崩解值大、消减值小,而品质差的稻米则相反[34]。一般认为,随着施氮量增加,稻米的峰值黏度和崩解值呈下降趋势,消减值则呈上升趋势,说明施氮量与稻米淀粉RVA谱特性呈负相关[35–36]。而郭涛等[37]发现,峰值黏度、热浆黏度、最终黏度随施氮量增加而下降,崩解值先增后降,消减值无明显变化规律,表明过高或过低的氮肥水平均使RVA谱变差。本研究表明,随着施氮量的增加,两个品种的峰值黏度、热浆黏度和最终黏度呈下降趋势,崩解值和消减值无明显规律性变化,N135处理下两品种的崩解值最大,消减值最小,但与N0处理差异不显著,糊化温度整体呈上升趋势,各处理间差异不显著。相同施氮量下J20的峰值黏度、热浆黏度、崩解值和最终黏度均低于越光,这可能是由于J20蛋白质含量较高,抑制水分与米粉的结合,从而降低黏度[38]。

食味计测得的食味值是对米质的综合评价,该值越大则说明食味品质越好。高辉等[39]认为,随施氮量增加稻米的食味值呈下降趋势,且不同品种对氮肥用量的反应敏感程度不同,施氮量和水稻生育类型对食味值存在极显著影响。王艳等[40]研究也发现随施氮量增加稻米的食味值显著下降。本研究表明,不同品种对施氮量的响应存在差异,J20的食味值随施氮量增加而逐渐下降,各施氮处理的平均食味值较N0处理下降了10.73%,越光的食味值在N135处理达到最大,N225处理最小,施氮量对稻米食味各指标影响不同,其中外观和口感最易受到氮肥影响,这与姜元华等[41]研究结果一致。

综上所述,同一品种对不同食味评价方法的响应存在差异,不同品种对氮肥响应的敏感程度也有所不同,J20食味品质受施氮量的影响大于越光。综合淀粉RVA谱特性和食味计综合评分,在本试验条件下,以N0处理J20的蒸煮食味品质较好,在实际生产上,我们应根据不同品种选择适宜的氮肥用量。

3.3 施氮量对巨胚稻米蛋白质含量、γ-氨基丁酸(GABA)含量及胚重量的影响

稻米的蛋白质品质主要由两方面构成:蛋白质含量和蛋白质质量。蛋白质含量是指糙米中蛋白质占糙米干重的百分比,蛋白质质量一般由赖氨酸(第一限制性氨基酸)的含量来评价[42]。张庆等[43]研究发现,增加施氮量能够提高稻米的蛋白质含量,降低直链淀粉含量,其原因可能为植株体内氮素积累,蛋白合成相关酶活性加强,从而促进蛋白质合成。但稻米的蛋白质含量过高,会制约早期蒸煮过程中稻米对水分的吸收,影响米粒的水合作用,导致食味品质下降[44]。徐大勇等[45]认为,稻米的蛋白质含量和氨基酸含量随施氮量增加而增加,其中以谷氨酸含量最高,组氨酸含量最低,且不同品种的蛋白质及氨基酸含量对施氮量的敏感性不同,本研究结论与其较为一致。随着施氮量增加,两个品种的蛋白质含量和氨基酸含量整体呈增加趋势,各种氨基酸的平均含量以谷氨酸最高,甲硫氨酸最低,说明增施氮肥可有效提高稻米的营养品质,而且非必需氨基酸对施氮量的响应比必需氨基酸敏感,与N0处理比,蛋白质和氨基酸含量在N225处理下的增幅最大。相同施氮量下J20的蛋白质含量、氨基酸总量均高于越光,但赖氨酸含量与越光差异不明显。

γ-氨基丁酸(GABA)是一种天然存在的非蛋白质氨基酸,具有多种生理功能,特别是对高血压、脑血管疾病等有着特殊疗效。周鑫[46]研究发现,巨胚糙米和预先发芽的巨型胚糙米均能明显降低自发性高血压大鼠的血压,而正常血压大鼠在整个试验周期内的血压无明显差异变化,且发芽巨胚糙米组血浆中甘油三酯(TG)含量明显降低。Kang等[47]认为,在高脂饮食条件下,饲喂巨胚糙米能显著抑制小鼠体重增加,降低血糖浓度、血浆总胆固醇和甘油三酯浓度。因此,食疗同源的巨胚水稻具有独特和潜在的经济利用价值以及广泛的应用前景。本研究表明,随着施氮量增加,两个品种的GABA含量和胚重量先增后降,在N135处理达到最大,J20各处理的平均GABA含量较越光显著增加48.92%,J20胚重达越光胚的2倍,说明J20功能特性明显优于普通稻,在治疗或预防高血压等疾病中,其可以成为一种较好的饮食选择,同时根据两品种GABA含量与施氮量建立效应方程计算得出,功能成分(GABA)含量最高的施氮量分别为 139.75 kg/hm2(J20)、141.50 kg/hm2(越光),略高于实际值。值得注意的是,GABA主要存在于米胚中,而在加工碾磨过程中这部分往往随米糠层一同被废弃,另因为糙米的膨胀性和吸水性较差,蒸煮困难,米饭口感粗糙,且不易消化吸收,最终导致不受人们欢迎。因此,如何兼顾巨胚糙米的蒸煮食味品质和营养品质,成为科学家研究的问题之一。有研究表明,糙米浸水后可提高胚中的谷氨酸脱羧酶活性,促进谷氨酸转化为GABA[48],并且发芽糙米米糠中的纤维被软化,糙米的蒸煮性和口感得到改善,即发芽糙米的食用性与精白米相近,其营养价值及功能特性大大高于糙米,更远胜于精白米[42]。综上,在对巨胚糙米研究的基础上,发芽的巨胚糙米也值得我们深入研究。

4 结论

施氮135 kg/hm2时,巨胚水稻产量最高,加工品质、外观品质及GABA含量最佳,超过此用量会降低巨胚水稻产量、米质及功能成分含量,蒸煮食味品质变劣。根据水稻产量、糙米率、整精米率、垩白粒率、GABA含量与施氮量建立的效应方程计算得出,两品种高产优质的适宜施氮范围为130~140 kg/hm2。与品种越光相比,品种J20的产量、整精米率和食味值对氮肥较为敏感,且相同施氮量下J20的蛋白质含量、水解氨基酸总量及GABA含量均高于越光。

猜你喜欢

精米食味糙米
喝糙米茶好处多
碾米加工技术对长粒型优质籼稻整精米率的影响
不同播期、收获期和储存期对优质长粒籼稻整精米率的影响
日本の寒地,北海道におけるうるち米良食味育種(日文)
食味知人:贾宝玉的三个饮食场景
勘误
食味·食美·食空间——餐饮空间设计专辑
川南杂交中稻收割期与干燥技术对整精米率的影响
麦胚糙米混合粉的挤压制备工艺研究
不同产地稻米的食味品质与化学组成的比较研究